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ELECTRON WAVE INSTABILITIES IN A MAGNETOPLASMA
CAUSED BY ELECTRON-NEUTRAL COLLISIONS"

By John Q. Howell
Langley Research Center

SUMMARY

A new class of collision-dependent electron waves is found in a non-Maxwellian
Lorentz magnetoplasma, and it is shown that electron-neutral collisions may cause these
waves to become unstable. The Boltzmann equation with collision integral is solved
while assuming propagation to be either parallel or perpendicular to the magnetic field.
Both conductivity tensors are derived and put in a form useful for numerical calculations.
The full set of Maxwell's equations is then used to derive the dispersion relations for
both directions of propagation. The dispersion relations are initially solved for a mono-
energetic electron distribution function and then an isotropic distribution with a peak of
nonzero half-width is treated. Some consideration is also given to an isotropic
Maxwellian distribution both with and without a bump on the tail,

An an example of propagation parallel to the magnetic field, transverse electro-
magnetic or "whistler" waves in a nitrogen plasma are considered. A new collisional
mode is found with real frequency near the electron cyclotron frequency, and under
appropriate conditions it may be either convectively or absolutely unstable. Longitudinal
or electrostatic waves propagating perpendicular to the magnetic field in a nitrogen
plasma are also considered. A series of new collisional modes with real frequency near
the electron cyclotron frequency and its harmonics are shown to be unstable under some
conditions. For both directions of propagation, the electron waves can be unstable if a
large fraction of plasma electrons have their velocity in a region where the electron-
neutral collision frequency increases (or decreases) rapidly enough. The requirement
on the electron-neutral collision frequency is easily met by nitrogen, mercury, and the
Ramsauer gases.

*The information in this paper is largely based on a dissertation entitled
"Collisional Effects on Waves in a Magnetoplasma' submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Applied Physics, Stanford
University, Stanford, California, June 1970.



INTRODUCTION

In recent years both experimental and theoretical investigations of collision-
induced instabilities in a plasma have been undertaken. Most of this effort has been
directed toward determining the effect of electron-neutral collisions on electron waves
in a weakly ionized plasma where electron-electron and electron-ion collisions are neg-
ligible. It has been found that both convective and absolute instabilities are possible if
(1) the electron distribution function is sufficiently non-Maxwellian and if (2) the electron-
neutral collision cross section increases (or decreases) rapidly enough with electron
energy. The purpose of this paper is to obtain dispersion relations for waves in a weakly
ionized magnetoplasma by treating electron-neutral collisions in the most rigorous
manner possible, and then to solve these dispersion relations for realistic plasma con-
ditions. There may be electron-neutral attachment in plasmas of this type but the
resulting negative ions will not affect the waves being considered because of their large

mass.

Historical Review of Previous Work

To predict the effect of electron-neutral collisions on waves in a plasma, two
approaches have been utilized, Some workers have considered the effective radiation
temperature of the plasma whereas others have determined the stability of waves propa-
gating in the plasma. The latter point of view is taken in this report.

In 1958 Twiss (ref. 1), while investigating the radiation spectra from a plasma,
found that under some conditions a non-Maxwellian plasma could radiate more energy
than it absorbs over a region of the spectrum. Then in 1961 Bekefi et al, (ref. 2) showed
that electron-neutral collisions could be responsible for such enhanced emission. This
phenomenon was investigated experimentally by Fields et al, (ref. 3) and they found a peak
in the radiation spectra from some plasmas at the electron cyclotron frequency. Both
their experimental and theoretical work showed that this condition occurred when the
electron energy distribution was highly non-Maxwellian and when the electron-neutral
collision cross section increased rapidly enough with velocity. The radiation tempera-
ture approach was also used in references 4 to 8 where more experimental results are
reported and in references 9 to 12 where further theoretical work is given. Duréek
(ref. 12) used a purely quantum mechanical point of view and obtained results similar to
those of other authors.

Of those authors treating the collisional effects on waves propagating in a plasma,
only those analyzing electron-neutral collisions by means of a realistic velocity-dependent
collision model are discussed here. In 1964 Drummond et al. (ref. 13) assumed that the
electron-neutral collision cross section was isotropic but velocity dependent and derived



the dispersion relation for electrostatic waves in an unmagnetized plasma. They recov-
ered the well-known Landau dispersion relation in the collisionless limit., Derfler

(ref. 14), as did Drummond, assumed the electrons to be colliding with infinitely heavy
neutrals but allowed for an angular dependence in the collision cross section. In the
limit of isotropic collisions, his dispersion relation is identical to that of Drummond.
Derfler solved the dispersion relation for a simple case and discovered a group of poten-
tially unstable collision-dependent modes he called "pseudo-sound waves." Suzuki

(ref. 15), Idehara and Sugaya (ref. 16), and Shimomura and Mitani (ref. 17) investigated
the effects of electron-neutral collisions on waves in a magnetoplasma. They all |
assumed a Lorentz gas model (that is, infinitely heavy neutrals and ions) and allowed for
an isotropic velocity-dependent collision cross section. Suzuki considered transverse
electric waves propagating parallel to the applied magnetic field and found a new mode
with real frequency near the cyclotron frequency. This mode was unstable under some
conditions and vanished in the collisionless limit. Idehara and Sugaya considered waves
propagating perpendicular to the magnetic field and investigated both the ordinary and
the extraordinary waves. They assumed monoenergetic electrons and found that either
mode may be unstable at frequencies near the electron cyclotron harmonics. However,
their results are valid only in the near infinite wavelength limit., Shimomura and Mitani
also considered ordinary waves propagating perpendicular to the magnetic field, Unfor-
tunately, they made an error in solving the first-order Boltzmann equation and their
conductivity tensor is incorrect. Their solution for the first-order electron distribution
function does not satisfy the differential equation. The error is of such nature, however,
that their 033 term is correct, and hence their dispersion relation for the ordinary
wave is correct. They also assumed monoenergetic electrons and found collision-
induced instabilities.

Collision Models

When solving the Boltzmann equation

Ayv. 8
at oT

. (ﬁ+vX§).a_f=(a_f) . ()
CcO

£
m av.  \at

for the electron distribution function f (V ,F,t), the collision model assumed is very

important in determining how easily the solution will be ohtained. The most common
(and the simplest) approach merely ignores collisions altogether, that is,

(g{>coll =0 (2)



In this form the Boltzmann equation is usually called the Vlasov equation. On the other
hand, for elastic binary collisions, the most exact collision term one can use (and the
most difficult to work with) is the Boltzmann collision integral

<3t)c011 §17 - Flofe(7) #(7) - 17) 7(7)]an a* (3)

where o is the collision cross section and F(V) is the distribution function of the
particles with which the electrons are colliding. The velocities of an electron before

and after the collision are v and V', and the before and after velocities of the particle
with which the electron collided are V and V'. The differential solid angle in velocity
space in the center of mass frame of reference is df2. For electrons in a weakly ionized
plasma, electron-neutral collisions are much more frequent than either electron-electron
or electron-ion collisions. Hence, in this case F(V) is the distribution function of the
neutral background gas.

The Lorentz gas model assumes elastic collisions with neutrals that are infinitely
heavy and stationary, that is,

F(V) = N6 (V) (4)

where N is the number density of the neutrals. Equation (3) then becomes

<z_£>coll = N|¥| g' o(x,WI)E(V') - f(?f'ﬂ aQ’ (5)

where Yy isthe angle between Vv and V' and df' is the differential solid angle

in V' space. This collision model was used by Derfler (ref. 14) to derive the disper-
sion relation for electrostatic waves in an unmagnetized plasma. Drummond, et al.
(ref. 13), Suzuki (ref. 15), Idehara and Sugaya (ref. 16), and others have assumed that the
collision cross section is isotropic, thatis, o is a function of |[¥| only. In this case
equation (5) trivially becomes

where v(v) = 47Nvo(v) is a velocity-dependent collision frequency.

Wilensky (ref. 18), in his work on electrostatic waves in an unmagnetized argon
plasma, showed that the most important physics is in the energy dependence of the cross
section and not in the angular dependence. He allowed for an angular-dependent cross



section and found that the wave dispersion differed very little from that given by the iso-
tropic collision model. Consequently, ignoring the angular dependence as in equation (6)
should be a very good approximation. In this report the collision models given by equa-
tions (5) and (6) are used exclusively.

In an attempt to put the Boltzmann equation in a more tractable form than the col-
lision integral allows, a large number of approximate collision models have been used.
Dougherty (ref. 19) in his investigation of the upper ionosphere used a model Fokker-
Planck equation

of 3 - = KT of
il =Y — V -~ C)f + - — (7)
(8t)cou v B ) m av]

where v is a constant electron collision frequency and ¢ and T are a velocity and a
temperature which Dougherty chose so that the generation-dissipation rates take on the
proper values as discussed later, This collision model is more appropriately used when
collisions result in only small changes in the velocity vector of the colliding particle and
hence is most appropriately applied to coulomb collisions. This equation is derived in a
more general form from equation (3) by Holt and Haskell (ref. 20). On the other hand,
Bhatnager, Gross, and Krook (ref. 21) replaced Boltzmann's collision integral by a simple
dissipation term

(2_£>c011 ) V(fm i f) @

which describes the relaxation of electron velocities to a local Maxwellian distribution

-3/2 =  =\2

fm = (nvg) exp iv__zc)_ (9)
i)

Similarly, Allis, Buchsbaum, and Bers (ref. 22) assumed relaxation to some as yet

unspecified equilibrium distribution function fO and wrote

of _ _
(E)coll B V(fo f) (10

Note that the last three models all contain an average collision frequency v which must
be specified, and equations (7) and (8) have other unspecified parameters. These unknown
parameters should in practice be specified so that the principle of detailed balancing is
obeyed. This procedure involves taking the following generation-dissipation rates of
particles, momentum, and energy: '



f 3
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H=1 g v2 <2"i> sy (13)
2 ot /eoll

and choosing the unknown parameters so that these rates take on their proper values,

For example, I should be chosen equal to zero if no particles are generated by the
collision process. If the collisions are between particles of the same species, then the
choice G =H=0 should be made as Dougherty did, whereas for the Lorentz gas model
described earlier H should be equal to zero but G not equal to zero. Achieving the
correct generation-dissipation rates is not a problem with the collision models expressed
by equations (3), (5), and (6) as they automatically take on the correct rates to all orders,
and not just to the first three expressed by equations (11) to (13).

Outline of the Present Analysis

As mentioned earlier, the collision models expressed by equations (5) and (6) are
used exclusively in this report. Waves proportional to exp (iwt - ik - F) are assumed
and the Boltzmann equation with equation (6) is solved for the general wavenumber K.
The solution is then specialized to K perpendicular to the magnetic field ﬁ, and the
conductivity tensor and dispersion relations are obtained. The stability and dispersion
of the longitudinal or electrostatic waves are investigated by numerically solving the
appropriate dispersion relation, The stability character of the waves is determined by
mapping the real wavenumber axis into the complex frequency plane by means of the dis-
persion relation and then applying Derfler's frequency cusp criterion (refs. 23 to 26).

In a somewhat simplified form sufficient for use here, if the mapping in the complex fre-
quency plane is above the real frequency axis, the plasma is stable. If it goes below the
axis, the plasma is at least convectively unstable. It is absolutely unstable only if a
branch point can be located either on the mapping but below the real frequency axis or in
a closed region above the mapping but below the real frequency axis. The Boltzmann
equation with equation (5) is solved and the dispersion relations and conductivity tensor
for kK parallel to the magnetic field are obtained. The dispersion relation representing
the transverse electromagnetic waves is numerically solved, and solutions of the disper-
sion relations for various isotropic electron distribution functions are given. For propa-
gation both parallel and perpendicular to the magnetic field, a monoenergetic electron



distribution is treated first and then a peaked energy distribution function having a peak
of nonzero half-width is considered. Consideration is also given to a Maxwellian dis-
tribution function and to a Maxwellian with a bump on the tail. It is assumed that elec-
trons collide with nitrogen neutrals, but similar results would be obtained for any gas
having a steep slope in its electron-neutral collision cross-section curve. In particular,
the Ramsauer gases (argon, xenon, and krypton) would be appropriate because of their
rapidly increasing collision frequency near the Ramsauer minimum,

SYMBOLS
A defined by equation (H5)
A®F) defined by equations (27)
A].(\'r’) defined by equation (37)
Y] parameter used in equation (E13)
B defined by equation (H6)
B magnetic field vector
EO’BO zero-order magnetic field vector and magnitude
El first-order magnetic field vector
Bl(x) Bernoulli polynomials (eq. (H9))
Ca number of electrons gaining energy
Cy, number of electrons losing energy
Cm constant, (eq. (78))
Cg constant in peaked electron distribution (eqs. (73) and (78))
C(n dummy function (eq. (B8))
c velocity of light



¢ velocity parameter in equation (7)

D,Dl,DZ,DE,Di dispersion relations

D, Dj; defined by equation (29)

e element of solid angle in ¥ space

ae! element of solid angle in V' space

d3r differential volume

E electric field vector

El first-order electric field vector

EX,Ey components of El along x and y directions

E, symbolic for Ex + '1Ey and represents right- and left-hand polarized

waves (eq. (122))

e unsigned charge of electron

él’éS unit vectors along X axis and Z axis
éx,éy,éz unit vectors along x, y, and z directions
F(V) particle distribution function (eq. (3))

pFq 2F3 generalized hypergeometric function

F(z) dummy function (eq. (I1))

F(p) dummy function (eq. (E8))

f electroh distribution function

f homogeneous part of electron distribution function (eq. (B5))



Il (z)

1151913

expansion variable of first-order electron distribution function (eq. (84))

Maxwellian electron distribution (eq. (9))

peaked electron distribution function

zero-order electron distribution function

first-order electron distribution function

components of first-order electron distribution function (eg. (M5))

transform of first-order distribution function

momentum generation rate (eq. (12))
defined by equations (36) and (52)
defined by equation (97)

defined by equation (109)

energy generation rate (eq. (13))
defined by equation (H10)

collisional frequency slope parameter used in equation (67)

defined by equation (21)

defined by equation (H')

particle generation-dissipation rate (eq. (11))

unit tensor
modified Bessel function

convenient symbols denoting specific integral used in appendix E



Im() imaginary part of variable

i V-1

I current density (eq. (33))

-j’ext driving current (eq. (121))

jx’jy components of current density along X axis and Y axis (eq. (121))
jo( ),jl( ),jz( ). . .,jn( ) spherical Bessel functions of first kind
iy symbolic for j '1jy (eq. (122))

E,k wavenumber vector and magnitude

L, Li; defined by equation (30)

l,m indices of summation

m mass of electron

N neutral particle density; electron number

Ng number of electrons gaining energy

Ny, number of electrons losing energy

n electron density

n unit vector along B

nj, 15, My components of vector T

P polarization vector

P, probability of collision

Pl( ) Legendre polynomials

10



v

t'

<

V1

Vo

v3

associated Legendre polynomials

pressure in equation (71); dummy variable in equation (H2)
defined by equation (86)

transfer collision cross section (eq. (87))

real part of variable

space position vector

symbolic notation given in equation (41)

parameter in peaked electron distribution (eq. (73))
temperature

defined by equation (91)

time variable; dummy variable (eq. (B17))

dummy variable (eq. (B17))

velocity vector (eq. (3))

defined by equation (H9)

velocity vectors

component of velocity vector

thermal speed; velocity at maximum of peaked distribution function
thermal speed (eq. (78))

location of peak in peaked distribution (eq. (78))

component of velocity along Z axis

11



w; weights of Gauss quadrature rule (eq. (G2))

wl' weights of Gauss quadrature rule along contour (eq. (I8))
X,Y,Z coordinate axes
X nodes of Gauss quadrature rule (eq. (G2))

XmYm parameters in complex contour (eqs. (I12) and (13))

Y, ,(6,9) spherical harmonic

Z() defined by equation (N8)

ZF( ) Fried function

z nodes of Gauss quadrature rule along contour (eq. (I7))

o proportion of electron distribution function that is Maxwellian (eq. (78))
@y,09,. . Qg collision frequency function parameters (eq. (70))
Bg defined by equation (98)

() gamma function

Y parameter in complex contour (eq. (I13))

&(v) Dirac delta function

Or s Kronecker delta

Eijk permuta\tion tensor

€ free-space dielectric constant

n normalized frequency, wy/wc

0,0" spherical coordinate angles in velocity space

12



K Boltzmann's constant

by defined by equation (55)

An,s defined by equation (99)

Ao defined after equation (N4)

Ay defined by equation (117)

Ko permeability of free space

v collision frequency (eq. (6))

Y transfer collision frequency (eq. (88))

Voo collision frequency at infinite electron velocity

vy average collision frequency (eq. (77))

£ dummy variable (eq. (59))

ﬁ,nij polarization tensor (eq. (C11)) and its components

p charge density

a(x,v) collision cross section

o (V) expansion constant of collision cross section (eq. (J2))

6>°ij conductivity tensor

T, T',T",Tl,TO dummy variables (appendix B)

(72 spherical coordinate angle in velocity space; also a dummy integration
variable

®(p,V) defined by equation (28)

13



X scattering angle

w frequency angle

Be,We cyclotron frequency (eq. (22))

Wi hybrid frequency, wg + wrz)

wp plasma frequency, (ne2 /me 0) 1/2

W, abbreviated notation for w - iv (eq. (23))
Subscript:

coll collision

Vector symbols without arrows denote the magnitude. An asterisk denotes a com-
plex conjugate and a circumflex denotes a transform.

THEORY OF WAVES PROPAGATING PERPENDICULAR
TO THE MAGNETIC FIELD

In this section dispersion relations for waves propagating perpendicular to an
applied magnetic field "ﬁo are derived. A Lorentz gas model is assumed, and the
electron-neutral collision cross section is assumed to be isotropic. The first order dis-
tribution function is derived and from it the conductivity tensor for the general case of
kK at any angle to EO is obtained. This tensor is then specialized to propagation per-
pendicular to the magnetic field, and the dispersion relations are obtained. A discussion
of some of the analytic properties of the dispersion relation that describes electrostatic
or longitudinal waves is given.

Conductivity Tensor for General k With Isotropic Collisions

In the Introduction it was stated that the Boltzmann equation for electrons colliding
elastically and isotropically with infinitely heavy neutrals is

A7 . L _2(5.7xB) L v + v g £(7")ae" (14)

-—r

ot or m
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g}

where df' is an element of solid angle in V' space. This equation is linearized by

making the "ansatz" (initial assumption)

\
(F) = 157 + ;@)
B = BO + B1

J

and in the usual manner consider the first-order terms (subscript 1) to be small pertur-
bations about the much larger zero-order terms (subscript 0). Then obtain the zero-
order equation

€ (= Fo 0 _ v = '
- (7 x By) 2= vy + L S' 1,7 d (16)

and the first-order equation

of of - of
_l+{7’._l_£({;xB).
at 57 M 0

(i-:’ +x7><'B’).af_°-uf +Lgf(V')dQ‘ (an
1 157 ity )

-t

4|
gle

3

In appendix A the solution of the zero-order equation is found to be any isotropic distri-
bution function fO(v) and hence the term (V X ﬁl) . afo/aV in the first-order equa-

tion is identically zero. To solve equation (17), use is made of a Fourier transform in

space defined by

—

E(7E.t) = ( 1(7,7,t) et Tl (18)
and a Laplace transform in time defined by
N 00
f(7,7,0) = g' £(7,7,t)eStat (19)
Y0

where s is chosen equal to iw. Applying these transforms to equation (17) or equiva-
lently assuming that all the variables are proportional to exp(iwt - ik - ?) yields

_83

p—
T~
€

<
]
]
<

7)i; - (7 x D) - — = (@) (20)
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where

H=CEF . 0,7 S !
h(V) = = E, pe= I fl(v Yd§2 (21)
eB B
0 0
0
w, =w - iv(v) (23)

The Laplace transform analysis was used so that the rules of the inverse Laplace
transform could be used later to define the dispersion relations properly. Even though
no initial conditions are allowed for, the dispersion relations that are derived will
properly describe any waves that are excited and will predict the onset of wave

instabilities.

Equation (20) is solved by the method of characteristics in a manner similar to
that used by Omura (ref. 27). A parameter T is introduced so that Vv =v (7). The
characteristic equations then become

av(r) . (==
T -(v X wc) (24)
Lo\, df
i(wu—k -v)f1+-d—71=h(v) (25)

In appendix B these equations are solved and the solution is found to be

4 gA(V')dQ'g e~ 2@ ¥y
- e o drwg 0
f, = AF) + (26)

¢ 1- _V_ g S\°° e'é(QD,v')d(p 4o’
47T(.1)c 0

where
w0 - !
A) =S' e ?@IE Bl - 7 L ag
0 v
(27
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c

[—D:Iij = Dij = myn; + (bij - ninj) cos ¢ + €35k sin ¢ (29)
[f]ij = Lij = ninjcp + (5ij - ninj) sin @ - eijknk(cos -1 | (30)
Zu'c=%§0=wc-;—g=wcr'f (31)

By direct substitution of equation (26) into equation (20), one can show that the solution
has been obtained.

Equation (26) was also obtained by Idehara and Sugaya (ref. 16) in a somewhat more
complicated form. However, they were unable to simplify it to obtain relatively simple
dispersion relations of wide validity, as will be done here.

In the collisionless limit equation (26) yields

f,=—S_ A (32)

This result was obtained by Omura (ref. 27) and others and can be used to derive
Bernstein's (refs. 28 and 29) dispersion relation describing the propagation of cyclotron
waves in the Vlasov limit.

In appendix C, Maxwell's equations are stated and the general dispersion relation
is derived for a conductivity tensor o defined by

T=6-E=--en | 7iMa (33)

Using equation (33) and taking B = Bég in equation (26) yields

“’;2>€0 -
Oy = - g S‘O va(V)B‘ viAj(v)dQ:Idv

g Ai(@)de S' S‘: vie"®@ V)40 a0

1+ # G(v)

2
w_€ ©0

p 0 f'
—gO vu(v) O(V)

5 dv (34)
41w c
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where

This tensor is the exact conductivity tensor appropriate to the model assumed.
next section this tensor is put in a usable form after assuming kKl _ﬁ, and the wave
dispersion relations are then obtained from Maxwell's equations.
K || B is assumed and again the simplified conductivity tensor and wave dispersion

@(QD,V) =1
We
[ sin © (1 - cos @)
L = |-(1 - cos ¢) sin @
0 0
_cos @ sin @ 0
D= |-sin @ cos @ 0
0 0 1

relations are obtained.

Conductivity Tensor and Dispersion Relations for KlB

In a later section

(35)

(36)

(37)

(38)

(39)

(40)

In the

In this section the conductivity tensor given by equation (34) is simplified by con-

sidering propagation strictly perpendicular to the magnetic field, for example, K = kél.
For convenience, the symbolic notation

18



S(al) = i (kv/wC)ZZal (41)

where 7 = wy/wc will be used.

In appendixes D and E after much algebraic manipulation, the conductivity tensor

is given by
11 %12 0
0= -0y9 T99 0 (42)
B 0 0 033—
where
' 1
. 2 vi w_ S
driwe W o "0 ( )
011 = ——22 2+l gy (43)
11 ) 0 o S( 1 )
iv
* 20 +1
4nweow2w o yf! S( )
oo = pcg 2+ 1) gy (44)
12 k2 0

. 1
w S
o (21 T 1)

1 |_ 1
) 41r1w S‘ oy 3+ |_ WO 3):]

dv (45)
w+1VS( 1 )I
2 +1

E) 1 1
Ogg = 47r1wpeo S‘ § |:(2l D@ 3):|}dv (46)
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Equations (42) to (46) give the conductivity tensor in a form suitable for computations.
Shimomura and Mitani (ref. 17) attempted to derive this tensor also, but they made an
error in solving the first-order Boltzmann equation given here by equation (20). Their
error was of such a nature, however, that they still obtained the correct expression for
033- It agrees with equation (46) when allowances are made for differences in notation,

To obtain the dispersion relations, assume k = kél in equation (C17), and use
equation (42) to obtain

14 911 912 0
1(4)60 1w€0
o g 2
D(w,k) = | - - 12 1+ - 22 _ (-k—g) 0 =0 (47)
lweo 1We w
0

o 2

0 0 b33 (E>
1w<—:0 w

By expanding the determinant, two uncoupled dispersion relations are obtained:

o 2
D (k) = 1+ 52 _ (k—c) -0 (48)
1(-()60 W

2
o () 2 )
1+ 11 1+,22-(E> + ,12> =0 (49)
1(—060 1(.060 w 1(4)60

The waves described by D (w k) are characterized by E1 ” B and are usually called
ordinary waves, since they are unaffected by the magnetic field 1n the cold plasma limit.

and

D, (w,k)

]

This same dispersion relation was derived in an approximate form and discussed by
Idehara and Sugaya (ref. 16) for a monoenergetic electron distribution. Shimomura and
Mitani (ref. 17) also obtained equations (48) and (46) and found that a monoenergetic dis-
tribution function leads to collisional instabilities if the electron-neutral collision fre-
quency increases rapidly enough with velocity. This dispersion relation is not discussed
further in this report.

In the limit of very small phase velocity, that is, kc/w >>> 1, equation (49) yields
11

Dy(k) = 1+ == 0 (50)
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Using equation (43) and dropping the subscript 2 on D then yields

S-°° vfwaG(v)

w 2
= P VvV _ §v=
D(w,k) =1+ 47T( ) 0 W+ ivG({v) v

= (51)

where

(kv/wc)zl

Glv) = ) — (52)
X ZZI &2+ 1D)02-1...02-12

The waves described by this equation are characterized by El " K and in the collision-
less limit have been variously called extraordinary, longitudinal, electrostatic, cyclotron,
or Bernstein waves. They were discussed in a review paper by Crawford (ref. 30) in
1967. The dispersion relation describing these waves is generally derived in a much
simpler manner by using the electrostatic approximation ab initio. This derivation has
been made in appendix F where equation (51) is obtained more directly. This dispersion
relation is discussed further in the next section and is later solved for several inter-
esting cases.

Discussion of Electrostatic Dispersion Relation

In the preceding section, the dispersion relations for waves propagating perpendic-
ular to an applied magnetic field in a Lorentz gas plasma were derived. These disper-
sion relations were exact in the framework of the collision model assumed, that is, an
isotropic velocity-dependent electron-neutral collision cross section. The quasi-static
approximation was then made to obtain the dispersion relation for cyclotron or
Bernstein waves. The properties of this dispersion relation will now be discussed.

From the series expansion given by equation (52), G{(v) can be written alterna-
tively as a generalized hypergeometric function

2
G(v) = -1 + 2F:{l, 1/2;3/2,1 -7, 1 +n; -(k" ):| (53)

We

Consequently, the theory of asymptotic expansions of hypergeometric functions can be
used to help evaluate G(v) (ref. 31).

In the limit of zero magnetic field, that is, w, = 0, equation (51) reduces to

w \2 pwo Vfb (1 - X coth'lk)
D(w,k) = 1 - 47 _kE 51 dv=0 (54)

0 1 + 12 coth-1a
kv
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where
A =2 (55)

This dispersion relation was obtained by Drummond et al. (ref. 13) and Derfler (ref. 14)
and represents electrostatic waves in an isotropic Lorentz gas plasma. Hence, equa-
tion (51) has the correct form in the limit of a vanishing magnetic field.

On the other hand, in the presence of a magnetic field, but in the limit of zero col-
lisions, equation (51) yields

w \2 Ao
D(w,k) = 1 + 4n<_p> g vbe(v) dv=0 (56)
k/ Jo
It fO is taken to be Maxwellian, that is,
R
(V) = ——"~—~ 57

then equation (56) yields

w 22 (kv /w )
0/%c
D(w,k) = 1 - 2<E'p—> ZZ

(58)

where

This relation can be shown to be equivalent to Bernstein's dispersion relation (refs. 28
and 29), given by
2w 2

D\ e o L®
D(w,k)=1+|—1] e
kv - ZZ - n2

=0 (59)

where
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However in practice, equation (58) has proven to be much more efficient for computation.
The collisionless electrostatic dispersion relation, given by either equation (58) or
equation (59), is characterized by undamped pass bands at frequencies just above each
electron cyclotron harmonic separated by bands that are very heavily damped. In the
limit of zero magnetic field, neither of these equations predict Landau damping since the
infinite series in both equations represents only the contribution from an integral along
the real axis in velocity space. However, in this limit the electrostatic waves are
damped as Landau (ref. 32) and others (ref.33) have shown. To recover Landau damping
properly it is necessary to indent the velocity contour around a singularity that crosses
the real axis as the magnetic field vanishes. Baldwin and Rowlands (ref. 34) have shown
how Landau damping can be recovered by rewriting equation (59) in an integral form and
eventually obtain the Landau dispersion relation

w 2
- p v W -
D(w,k) = 1 - <WE> z (E%> -0 (60)

where 2Z' is the derivative of the Hilbert transform of the Gaussian as tabulated by
Fried and Conte (ref. 35). However, the theory given here quite easily yields equa-
tion (60) from either equation (56) as the magnetic field vanishes or from equation (54)
as collisions vanish, if it is assumed, of course, that f; is chosen to be Maxwellian.
When doing this, one must keep in mind that the dispersion relations are defined for k
real and « on a Laplace integral path. For other k and w values, the appropriate
analytic continuation must be taken by choosing the correct contour in velocity space.

The dispersion relation given by equation (51) is considerably different from those
given by cruder collision models. Use of the simple constant collision frequency model
of Allis et al. (ref. 22), that is,

of\ i
(a—t>cou = v(ty - £) 61)

has the effect of replacing w by w -iv in the collisionless equation. In an attempt to
improve on this collision model, a variation of the Bhatnagar-Gross-Krook (BGK) colli-
sion model has been used (ref. 36),

af _ M1\
<B—t>coll B V|EO (1 * n_0> :‘ (©2)

where n, is the zero-order electron density and ny is the first-order electron den-

sity. In addition to the replacement of w by w - iv, this model also replaces wg
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by [1 - i(u/w):l wlz) in the collisionless equation. Note that neither of these collision
models correctly produces the denominator in the integrand of equation (51). This
denominator is of major importance in determining the characteristics of the solutions
of the dispersion relation as it tends to cancel the resonance effect of the integrand when
the frequency is near a multiple of the cyclotron frequency. Hence one must conclude
that the collision models expressed by equations (61) and (62) can only be applied in the
near-collisionless and off-resonance limit.

Next note that equation (51) contains only even powers of k, and hence the following

symmetry relation holds:
D(w;k) = D(w,—k) (63)

Consequently, the roots of D(w,0) = 0 are branch points in the mapping of k into the
complex frequency plane. The location of these points is of prime importance in deter-
mining the stability character of the waves (refs. 23 to 26). From equation (51) also
obtain the symmetry relation

D(w,k) = D*(-w*,-k*) (64)

This relation is, of course, a statement of the Kramers-Kronig (ref. 37) relationship and
is a direct consequence of the causality principle which was built into this theory by
using the Laplace transform analysis in time,

Combining equations (63) and (64) yields then for k real
D(w,k) = D*(-w* k) (65)

Hence, only complex frequency solutions need to be determined in, for example, the right
half-plane. These properties are important when the dispersion relation (eq. (51)) is
solved for several different electron distribution functions in the next section.

SOLUTIONS OF THE ELECTROSTATIC DISPERSION RELATION FOR
PROPAGATION PERPENDICULAR TO THE MAGNETIC FIELD

In this section the dispersion relation is solved for electrostatic waves propagating
perpendicular to the magnetic field for several isotropic electron distribution functions.
A series of new collisional modes are found that depend for their existence on both a
highly non-Maxwellian electron distribution function and a velocity-dependent collision
frequency. Both convective and absolute instabilities are discovered when the electron
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distribution function is monoenergetic. A Lorentz gas plasma with nitrogen neutrals is
also considered and instabilities are again found when a peaked electron distribution
function is assumed. When a Maxwellian electron distribution function is chosen, it is
found that the wave dispersion predicted by the isotropic collision frequency model is
very close to that predicted by a constant-collision-frequency BGK model. Also an
electron distribution function consisting of both peaked and Maxwellian components is
briefly considered and the stabilizing influence of the Maxwellian population is
demonstrated.

Monoenergetic Electron Distribution

For the initial analysis of the dispersion relation (eq. (51)) it is assumed that the
zero-order electron distribution function is monoenergetic, that is,

6 -V
£y(v) = (V—ZO)_ (66)
47TvO

Substituting this relation into equation (51) leads to the dispersion relation

5 G\ 4 252
w ww—w)G+v + ivG{(G - hG - h)| + veG
D(w,k) = 1 - [ [ ( ) ] =0 (67)
kv (w + ivG)2
where
h = (Y_ Q)
vd —
v v=vq
© 2L
z ~ kvo/w )
S @@= .. 02 -1
co 2 l
oo EiG(v) 2 z (vo/“c ) LT S
W Jymvy Vo S @+ D02-D ... @21\ Yo SnP -
w ~-iv
’]7 =
We
v = V(VO)
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The series representations given for G and G' were found to converge very rapidly;
thus, equation (67) was easily solvable by numerical methods.

Idehara and Sugaya (ref. 16) considered the same problem but they did not derive
the relatively simple dispersion relation given by equation (67). They instead made
approximations that are valid only for very small wavenumbers (or large wavelengths).

Before solving equation (67) the roots of D(w,0) =0 are investigated, since from
a preceding section, these roots are known to correspond to branch points in the complex
frequency plane. By expanding G and G' in equation (67) and keeping only terms to
lowest order in Kk, the dispersion relation yields

wd 4 w? (—411/) + w3(—6v2 - 20.)% - wg) + wzlzliu(uz + wg) + iuwg(S - h/3i|

+ wli(uz + wg)z + wg (31/2 + wg - 2hV2/?§I + ivaElz(h/3 -1 - wg(l + h/3i| =0 (68)
This equation, being a complex fifth-order polynomial in w, has five complex roots.
However, because of the symmetry relations expressed by equation (65), there can be
only three independent solutions. One root must have a zero real part, and each pair of
the other four must be related by w, = -w]’g where wy and wp denote one pair of
the four remaining roots. One of these pairs has a real part near the hybrid frequency

wy = \/wg + wg and the other has a real part near the cyclotron frequency. The precise

location of these roots will, of course, depend on the plasma parameters chosen, If
these roots lie below the real axis, then an absolute instability is indicated, whereas if
they are above the axis, there is no absolute instability but there may or may not be a
convective instability (refs. 23 to 26). By solving equation (68) for various values of the
slope parameter h, it is found that the root with the real part near the cyclotron fre-
quency leads to an absolute instability for large positive values of h, for example,

h> 3. However, for large negative values of h, the roots with real parts zero and near
the hybrid frequency both lead to an absolute instability, In addition to these solutions,
one can show analytically that as k - 0, equation (67) is solved by w =0 and

w = nw, + iv where n=234,. ...

With the help of these solutions, it is possible to numerically solve the dispersion
relation (eq. (67)) with k real and greater than zero to obtain the desired complex fre-
quency solutions in the right half-plane. This procedure leads to the mappings of the
real wavenumber axis into the complex frequency plane shown in figures 1 to 4,

In figure 1 for h =4, an absolute instability at Re(w) = w. is predicted since one
of the branch points (indicated by the small circles) is in the lower half-plane. In this
figure only the first three terms of an infinite series of modes are plotted. The modes
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FMgure 1.- Real wavenumber axis mapped into complex frequency plane

with a positive slope parameter. The branch point (indicated by

a small circle) below the real w axis indicates an absolute

instability. The upper set of modes are the modified collisionless

modes. The bottom set are the collisional modes. The hybrid fre-

quency is indicated by the solid square symbol on the real w axis.
near higher cyclotron harmonics are similar to the two near w = 3w, in figure 1. The
two modes with Re(w) = 0 are collision-dependent modes and in the collisionless limit
they both coalesce to the point w = 0. They are not of much interest here since in a real
plasma they would be masked by ion effects. The three upper modes in figure 1 are
modified collisionless modes. In the collisionless limit, these modes have w real solu-
tions and would hence map into lines on the real frequency axis. The three lower modes
in this figure are collision-dependent modes, and in the collisionless limit they coalesce
into the points w = #nw, (n=1,2,3,. ..). Note particularly the absolutely unstable mode
with Re(w) = we. The location of the branch point associated with this mode is given by
one of the roots of the fifth-order polynomial (eq. (68)). If either v =0 or h =0, the
order of this equation is reduced by two as can be seen by reobtaining the new equation
from equation (67). The roots that vanish have real parts near twe and hence it is
concluded that these modes are introduced by collisions. The branch points associated
with the other collisional modes (and with the set of modified collisionless modes also)
are located at w = tnw¢ +iv (n = 2,3,4,. . .). One can show analytically that if either
h or v goes to zero, the collisional modes vanish and the branch points are then
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Figure 2.~ Real wavenumber axis mapped into complex frequency plane

with a negative slope parameter. The branch point at the hybrid

frequency is in the lower complex frequency plane so that the

plasma 1s absolutely unstable. Note that the modified collision-

less modes are below the collisional modes rather than above as

in figure 1. Hybrid frequency is indicated by a solid square

symbol. Small circles denote branch points.
associated only with the collisionless modes. These branch points cannot lead to abso-
lute instabilities for any set of plasma parameters. At most, these modes may be con-
vectively unstable unless there is another branch point below the real frequency axis but
above the mapping of the real Kk axis. No branch points of this type were found. Any
other branch points in the lower frequency plane may be shown to be ignorable. For
large k, the mappings appear to approach the points w = nw +iv (n=1,2,3,. . ), but
this result was not shown conclusively. It is not expected, however, that anything of
physical interest occurs at k values larger than those shown.

In figure 2 it is seen that for h = -4, there are two branch points in the lower half
plane. Note that the position of the modes has reversed. The modified collisionless
modes are on the bottom, and the collisional modes are on the top. The unstable modes
are hence the modified collisionless modes, and there is an absolute instability at the
hybrid frequency. The modes near Re(w) = 0 are also shown here, but as before, are
of only minor interest. Henceforth, they will not be considered.
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Figure 3.- Real wavenumber axis mapped into the complex frequency plane.
The branch points are all above the real « axis but the mapping
does dip below this axis and indicates a convective instability.
Hybrid frequency denoted by a solid square symbol; branch points are
denoted by small circles.

In figures 3 and 4, cases that are convectively unstable are shown. Note that the
branch points all lie above the real frequency axis so that there is no absolute instability.
However, the mapping of the real wavenumber axis dips below the real frequency axis and
indicates a convective instability. The unstable modes in both of these figures are colli-
sion dependent and vanish in the collisionless limit where the waves supported by the
plasma are known to be stable (ref. 36). Furthermore, for large collision frequencies a
damping effect is evident as shown by the fact that the v = 0.05w, case infigure 4 is
more unstable than the v = 0.1w, case in figure 3. Hence there must be some inter-
mediate collision frequency (and hence neutral gas density) for which the growth rate
Im(w) would reach a maximum, Note also that figures 3 and 4 are for h = 2. Values
of the slope parameter in this range are common in gases that are used in laboratory
discharge plasmas. For this reason it appears that this theory will find important
applications in predicting cyclotron wave propagation through plasmas. More realistic
electron distributions are treated in subsequent sections.

It should be pointed out at this point that a spherical shell distribution as considered
here is unstable even in the collisionless limit for some ranges of the plasma parameters
(ref. 36). However, for the cases investigated here and in the remaining part of this sec-
tion, the collisionless limit predicts only stable or evanescent waves. Hence, one can
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Figure 4.- Real wavenumber axis mapped into the complex frequency plane
for a convectively unstable case. Hybrid frequency indicated by a
solid square symbol; branch points are denoted by small circles.

truly say that the electron-neutral collision process is responsible for the predicted

instabilities.

Peaked Electron Distribution

In a previous section equation (51) is solved for a monoenergetic electron distribu-
tion function and collision-induced instabilities are found for some ranges of the slope
parameter

(69)

=

1}
<l
2e

In particular, unstable modes near the cyclotron harmonics are found for values of h
near 2 and above. For h negative, unstable modes with real frequency near zero and
near the hybrid frequency are found. Hence it seems likely that collisional instabilities
of this type should be found in a plasma if there were present (1) a background of neutrals
for which h$ 2 over some region or regions of velocity space, and (2) a sharply peaked
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electron distribution function centered in one of these regions. In the remainder of this
section it is shown that this is indeed possible.

The measured electron-neutral collision frequency for nitrogen exhibits a sharp
peak (refs. 38 and 39) as shown in figure 5. The parameter h ranges up to 5; thus
criterion (1) is met, To use the experimental values in the dispersion relation, first fit
a rational polynomial

(Vz + azv + a4) (V2 + a6v + CZB)

Pe= 75 > (70)
(7 = o) e ) (- )
1.2 x 1010 u y , :
B COLLISION FREQUENCY IN NITROGEN
.ok I TORR (133.3 N/m2) ﬁ
' 0°C -
8t i
v e
' - - — RATIONAL |
Aar ‘ >~ FUNCTION
2l > © EXPERIMENTAL
. 1 1 l
00 [ 2 3 4
VELOCITY IN /&V
T T T
v dv i
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all ] {
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Figure 5.- Rational function fit to experimental electron-neutral
collision frequency for nitrogen (ref. 38) and slope parameter
from rational function.

1
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to the experimental probability of collision for nitrogen measured by Brode (ref. 38).
Then obtain the collision frequency (ref. 39) from

v(v) = =S pP,v (71)
where p and T are, respectively, the pressure in torrs and the temperature in °K of
the nitrogen. Note that since p is proportional to T, only the neutral particle number
density is a parameter in the collision frequency function. Instead of number density,
however, the collision frequency at infinite electron velocity v, defined by

vvac
v(v) = o] (72)
will be used. A least-squares fit of equation (70) to the experimental probability of col-
lision for nitrogen (and mercury) (refs. 38 and 40) led to the parameters given in table I,

The quality of the fit for nitrogen can be seen in figure 5.

TABLE I.- LEAST SQUARES FIT TO EXPERIMENTAL PROBABILITY
OF COLLISION FOR NITROGEN AND MERCURY "

(vz + gV + oz4) (vz + OV + a8)
(v2 + 0gV + as) (VZ + 0pV + 019) (v - alO)

Pc:oz1

where P, isinem?Zand v isin ev:l

c

Nitrogen Mercury
ay 274.304 381.030
Oy -2.58343 .531224
g -3.16090 -.107263
oy 4.285651 .516368
Qg 2.55450 .475607
g -3.35392 -.717384
Qg -5.25412 -.840921
og 3.09938 .132412
0y 12.5096 .180940
%0 -4.55542 -7.01816

*References 38 to 40,
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To meet criterion (2), the distribution function,

c -5 2
fo(V) - fS(V) :_S_(_V_)S o 2(V/V0) (73)

A
0
2nv0

where

Do [t

(s+3)/2
. . G)

S r(s+ 3)
2
is used. This distribution function has a peak at \) and is shown plotted in figure 6.
The half-width of the peak is a transcendental function of s and is not conveniently used

as a parameter. However, the half-width increases (1) proportionally with ) and/or
(2) as s becomes smaller. The electron distribution function (eq. (73)) is normalized
according to

g fo(v)d3v =1 (74)

Once the distribution function fo(v) and the collision frequency function v(v)
are specified, the dispersion relation in equation (51) can be solved. It is necessary to
evaluate the velocity integral numerically but this is easily done by using a Gauss quadra-
ture rule. The details of this integration procedure are given in appendix G. When

I | f . J > I I I ] | [ I I
L2r . Ss vs -3l5g)
fs(V ) 27V°3( VO)
1.0~ —
s=20
b <-20 Vo= 1.75/eV i
Mo Vo =1.25./€V
&
~ .6~ T
>
@
a+ -
s§=5
vo=1.25/eV
.2 -]
o | 1 1 |

4 6 .8 10 1.2 1.4 1.6 1.8 20 22 24 26
VELOCITY IN eV

Figure 6.- Normalized peaked distribution function.
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carrying out this integration, it was necessary at times to use an asymptotic expansion
for G(v). Since G(v) was known to be a hypergeometric function (see eq. (53)), it was
possible to utilize the asymptotic expansions of generalized hypergeometric functions
given by Meijer (ref. 31). This expansion is given in appendix H. Note also that the
integrand in equation (51) will have poles wherever the denominator is zero. Once the
poles are located in velocity space, it is necessary to determine the correct integration
contour before trying to solve the dispersion relation. This determination is made by
recalling that equation (51) is defined for k real and «w on a Laplace integral path
(LIP). Usually, the real velocity axis proved to be a valid contour, but occasionally, it
was necessary to integrate along a deformed contour as described in appendix I. The
scheme described worked very well but is only one of many that could be used.

To determine the stability of the waves predicted by equation (51) for the case being
considered in this section, it was decided to map the real wavenumber axis into the
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Figure T.- Mapping of real wavenumber k into the complex frequency
plane. DPlot shows absolutely unstable waves. Hybrid frequency is
indicated by a solid square symbol; branch points are denoted by
small circles.
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complex frequency plane. If instabilities of an unknown nature are present, this method
seems to be a more useful approach than, for example, mapping from the frequency plane
into the wavenumber plane,

Figures 7 to 9 show the results of such a mapping. Because of the symmetry
relations expressed by equations (63) and (65), it is necessary only to consider k >0
and to look for roots in the right half frequency plane. Figure 7(a) shows a case that is
absolutely unstable because of the branch point at w = w,. The electron distribution
function peak is at Vo = 1.25\/3\_/’ and from figure 5 it can be seen that this point is the
approximate location of the most positive slope of the collision frequency function. The
three lower modes in figure 7(a) represent the new collisional modes described earlier
and vanish as the collisionless limit is approached. The three upper modes are modifi-
cations of the collisionless modes but are damped here unlike in the collisionless limit.
It is interesting to note that the modes shown in figure 7(a) all come from their own
branch points at k = 0, whereas in the monoenergetic electron distribution case, there
were sometimes two modes arising from a single branch point.

The case shown in figure 7(b) is identical to that shown in figure 7(a) except for a
lower collision frequency. Note that there are now more unstable modes; thus, it
appears that high collision frequencies tend to damp even the collisional modes. Since
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these modes also vanish at zero collision frequency, there is a particular collision fre-
guency, and hence a particular neutral gas pressure, at which the collisional cyclotron

waves are most unstable.

In figure 8 is shown a case where the electron distribution function half-width is
approximately twice that shown in figure 7(b). (See fig. 6.) Note that the first mode has
changed from absolutely unstable to convectively unstable and the third mode has become
stable. Hence, electron distribution functions with wider peaks tend to be more stable
than those with narrow peaks.

In figure 9 a case with the electron distribution function peak located on the negative
slope of the collision frequency curve is considered. As in the case of the monoenergetic
distribution function, the location of the modes is reversed and the collisional modes are
very heavily damped. However, the case in figure 9 is a stable situation unlike the one
presented in figure 2. Consequently, if the peaks were made sufficiently narrow, the case
given in figure 9 would become absolutely unstable because of the branch point with real
frequency near the hybrid frequency. However, the case of a positive slope parameter
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seems to be of more physical interest because of the large number of gases having
regions of positive slope in their collision frequency curves. Consequently, the negative
slope case will not be investigated further here. A case with large half-width, s=1
and v, = 1.05\/e_\7, was also considered briefly. It was found that the collisional mode
with real frequency near the cyclotron frequency was convectively unstable but that all
other modes were stable.

Earlier it has been shown that collisional instabilities are possible in a plasma if
a large percentage of the electrons are in a region in velocity space where the collision
frequency increases (or decreases) rapidly with velocity. If the collision frequéncy
slope is positive, there may be an absolute instability at the cyclotron frequency and con-
vective instabilities at the higher harmonics. If the collision frequency slope is negative,
there may be an absolute instability at the hybrid frequency and convective instabilities
at frequencies between the cyclotron harmonics. The occurrence and strength of these
instabilities depend very strongly on (1) the width of the peak in the electron distribution
function and (2) the slope of the collision frequency in the region of the peak. It is diffi-
cult to give more precise statements about the occurrence of these collisional instabili-
ties; thus it is necessary to consider each case separately.
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Maxwellian Electron Distribution

In this section equation (51) is solved with the same collision frequency function as
in the last section, that is, equation (72), but instead of a peaked electron energy distri-
bution function a Maxwellian distribution function

2 2)
-1V Vv
e< 0

—_7;3/2 vg (75)

fo (V) =

is used.

In figure 10 the real wavenumber axis is mapped into the complex frequency plane
and the modes shown are of the modified collisionless type. These modes cannot be
unstable since a Maxwellian plasma must be stable. As k becomes large, the mappings
apparently approach the points w = nw, (n=1,2,3,...). This statement, however, was
not shown conclusively either by numerical or analytical means. The collisional modes,
that were often unstable for the peaked electron distribution function, were not found in a
Maxwellian plasma. Apparently, these collisional modes are present only if the electron

[ ' I T I
vo=1.25/eV
wp= 2 We n
03 _Vm = OI We
+2=kvy /we
+2
30
~
é 02— +6 -
-
*4
| +8 4
0l | P L = ] |
1.0 2.0 30

Re (w/w¢)

Figure 10.- Mapping of real wavenumber k into the complex frequency
plane for a Maxwellian electron distribution. Hybrid frequency is
denoted by a solid square symbol; branch points are denoted by
small circles.
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distribution function has a region of positive slope. To investigate the disappearance of
these modes further, the isotropic distribution function given by

3 / (4#vg) (v < vp)
fo(V) = (76)
0 (v > vg)

was briefly considered and it was found analytically that the collisional mode did not
exist. In support of this argument, Bekefi et al. (ref. 41) found that, in general, there
must be a region where afo/av >0 for collisional instabilities to exist. However, they
used a radiation temperature approach and could not say anything about the existence or
nonexistence of the actual collisional mode.

Since the waves present in a Maxwellian plasma are stable, the complex k roots
for real w may be interpreted, according to established practice, as spatially damped
or growing waves. This representation is relevant to laboratory experiments since one
often excites the plasma at some real frequency and measures the complex and real parts
of the wavenumber., The results of such a mapping are shown in figure 11. The case
shown here was solved also by Tataronis (ref. 36) by using a constant collision frequency
BGK model, that is, equation (62). Because of the presence of the velocity-dependent
collision frequency in equation (51), the temperature of the Maxwellian electron distribu-
tion function did not normalize out as in his case, and so a thermal speed of v, = 1.5y/eV
was chosen as representative of values found in a laboratory plasma. For the collision

frequency parameter v_, a value was chosen so that the average collision frequency

o0?

given by
vy = v(v) £, (v) 47v2 dv (77
S'o 0 )

was the same as the constant collision frequency used by Tataronis. From figure 11 it is
seen that the two models differ but not substantially. There appear to be no important
differences, unlike in the case of the peaked distribution function where the collisional
modes do not exist for other collision models. Hence, it would seem that for a
Maxwellian plasma, it is not necessary to use the exact collisional model considered
here unless very precise results are desired.

Sum of Maxwellian and Peaked Electron Distributions

Since it was found that a peaked distribution function could lead to collision-induced
instabilities, one might wonder what portion of the distribution function must be
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Maxwellian before the waves become stable, To answer this question, the electron dis-
tribution function is chosen to be

/4

_s 2
fo(v) = aCpe +(1 - a)CS<_:_2>S e 2(V/Vz) (78)
where
C. = -3
m = (V7vy)
<§)(s+3)/2
Cg = 2

3 _[s+3
271v21"< 2)

Note that @ gives the proportion of the total electron population that is Maxwellian.
This distribution function also obeys the normalization criterion (eq. (74)).
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Figure 12.- Stability plot for Maxwellian plus peaked distribution
function. Mode with Re(w) =~ wg.
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Parameters were then chosen that were known to be absolutely unstable, that is,
s =30, vg= 1.25\/&, and v, = 0.1w,. The dispersion relation was solved for various
values of o« and v; to obtain the instability boundaries in the @,vq plane shown in
figure 12. The mode considered here was the collisional mode that has Re(w) = wg.
On the lower curve in figure 12, k =0 since the branch point in the complex frequency
plane is given by the root of D(w,0) = 0. On the upper curve the mapping of the real k
axis into the frequency plane dips down and just barely touches the real frequency axis
but does not go below it. At the point of contact it was found that k = 2.5w¢/vg.

Since an absolute instability occurs at zero group velocity (sw/8k = 0), it is not too
surprising to find that low-temperature Maxwellians affect the waves a great deal since
there would be proportionally more electrons near zero velocity. However, at higher
temperatures it is somewhat surprising to see that as much as 95 percent Maxwellian is
required to stabilize the unstable collisional mode. In figure 13 is shown a plot of the
distribution function (eq. (78)) for a case on each of the boundary lines in figure 12
(points A and B). Even though there are appreciable numbers of Maxwellian electrons,
the distribution function is still highly non-Maxwellian.
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Synopsis of Numerical Results

Briefly, it has been found that a rigorous treatment of electron-neutral collisions
in a non-Maxwellian Lorentz magnetoplasma predicts a new series of electrostatic modes
that vanish both in the collisionless and Maxwellian limits, Solutions of the wave-
dispersion relation show that these modes may be unstable for some plasma parameters.
Both convective and absolute instabilities were found near the cyclotron frequency whereas
only convective instabilities were found at the cyclotron harmonics. In addition, it was
found that there could be present an absolute instability near the hybrid frequency and
convective instabilities at frequencies between the cyclotron harmonics. It is well known
that cyclotron harmonic waves may be unstable in the collisionless limit for some of the
electron distribution functions considered in this section. However, all cases investigated
here are stable or evanescent in the collisionless limit; therefore, the electron-neutral
collision process is indeed responsible for the predicted instabilities.

THEORY OF WAVES PROPAGATING PARALLEL
TO THE MAGNETIC FIELD

In this section waves propagating along the direction of the applied magnetic field
are considered for both isotropic and anisotropic collision models. The general case of
anisotropic collisions is considered initially and the first-order distribution function is
written in terms of a set of inhomogeneous partial difference equations., After special-
izing to waves propagating parallel to the magnetic field, these equations are solved and
the conductivity tensor and dispersion relations are obtained. The isotropic collision
model is then considered and the conductivity tensor and dispersion relations are again
derived. It is shown that in the limit of isotropic collisions, the dispersion relations
found from the anisotropic collision frequency model are equivalent to those found when
collisions are assumed to be isotropic in the beginning. Some of the analytic properties
of the dispersion relations are discussed and comparison is made with other collision
models.

First-Order Distribution Function With Anisotropic Collisions

In the Lorentz gas model it is assumed that the ions and neutrals are infinitely
heavy and that the plasma is weakly ionized so that electron-neutral collisions are much
more frequent than either electron-electron or electron-ion collisions. The Boltzmann
equation for electrons can be written as

of - of e —_32 of _ o= — -
_a_t+v = ?n—(E +V ><B) . = N|¥| g o(v,x) Ef(v ) - f(vﬂdﬂ' (79)
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where x is the angle between ¥V and v'. The number density of the neutrals is N,
and o(v,x) is the differential scattering cross section describing the electron-neutral
collision process. This equation is linearized by making the ansatz

£(F) = £5(7) + £, (7)
E=0+ E, (80)
B

B=B

]

ot "1

The zero-order equation

of

(7 x @) - L - N[7] { ot [fo ™ - 15@]aer (81

and the first-order equation

of of of of
1 = 1 - = 1_e (" - o ) 0
—_—tV == - Xw,)  —=—{E; +V XB;) - —
at o (7 < @) ov m\ 1 1/ o7
+ N[7| ga(v,x) El(v') - _fl(ir’ﬂ ae' (82

where W, = eﬁo/m are then obtained. The solution of the zero-order equation
(appendix A) is any isotropic distribution function fo (v) and hence the term

(V X _1§1) . afo/a\'f' in the first-order equation is identically zero. As done previously,
the Fourier transform in space and the Laplace transform, in time, corresponding to the
wave representation exp(iwt - ik - r) are taken to obtain

. ‘of _of
i(w—\—;'k)fl - (VXZDC) '—:]-:—?—El '—_.0
: ov W v
#N7) § ot [ - £ @) e (83)
Expanding fl(w,l_{',ii') in spherical harmonics in velocity space yields
) L
f(wK,7) = Z Z fl’m(w,E,v) Y, 1,(6,9) (84)
=0 m=-
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(2 + 1)@ - m)
47 + m)!

where Y, m(e,go) = :l sz (cos G)einw. Substituting this relation into
b

equation (83) yields

of
. et tng _ e - . 0 honad
Z 1(w -V .k + me)fl,mYl,m == E, pe |71 Z fl,mYl,le,m (85)
l,m v l,m
where
Q= o0t WAL (86)
) m = o(v,X - —
Y, m©@:9)
In appendix J it is shown that for all m,
m
Ql,m = QZE 21 S.O o(v,x) |:1 - Pl(cos xi] sin y dy (87

where Pl(cos X) is the Legendre function of degree (. Then by following Allis
(ref. 42) and Derfler (ref. 14), the transfer collision frequencies are defined as

v (v) = N|7|Q (88)

and equation (85) then yields

_ of
E, .2 (89)

€
I,m-l,m m 1 v

Multiplying this equation by Y; s(e,cp) and performing an integration over the solid
angle df2 = sin 6 df d¢, an inho,mogeneous difference equation is obtained

(@ - ivp + swe)fy o - i Z £ m g v EYZ,m(9’¢) Y;,S(G,QD) d =T, g (90)
l,m
where
1/2
_ € 27 : 3
Ty = —= fO(T) 61‘,1[6s,1 ('Ex + 1Ey) + as,—l(Ex + 1Ey) + Gs,O‘/EEZ:I (91)

The integral can be easily evaluated for general k to give a partial difference equation
for fr s’ but instead it will be specialized to the case of k parallel to the magnetic
b
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field. For this case, 7V . K =vk cos 6 and the integral becomes

(r+s+ (r S+1)1/26
l,r+l

\/2r+ 2r + 3

1/2 |
e

ka‘ cos 6 Y, m(@:9) Yz 5(6,9) d

From equation (90) the difference equation

1/2
i(w-ivr+swc)f (r+s+1)(r—s+1)} /

___ivk £
s for+il r+l,s 29 + 3
1/2
r+ s)(r - s) _
+ fr—l,s[: or - 1 J =Tr s (93)

is obtained. Note that this equation is an ordinary difference equation in the index r at
constant s and is readily solvable by use of standard techniques., This equation is
solved later in this section to obtain the conductivity tensor and dispersion relation.

For the case k1l E, equation (90) would lead to a partial difference equation, that
is, one in which both the indices change. This type of equation is not readily solvable by
using standard techniques and is not considered in this report. Note, however, that the
isotropic collision model for kK 1l B was treated earlier.

Conductivity Tensor and Dispersion Relations for
kK| B with Anisotropic Collisions

The conductivity tensor for the case of propagation parallel to the magnetic field
will now be sought. Equation (84) is substituted into the current equation

T =5-E=-en g Vfl(\_/’)d:sv (94)

to obtain

1/2 o
T_o5-FE=e2" 3la 5 5
j=o-E= e(?) n SO v l}X(fl,l - fl,—l) + eyl(fl,l + fl,—l) - ez\/2fl,(ﬂdv (95)

Note that only f1 1 f1 0’ and fl 1 are needed to find the conductivity tensor &, and

with this in mind the solution of equation (93) is expressed interms of a continued fraction
as
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f16= gSTl,s (96)

’

where
g = 3/ikv 4-g2 9-52 16 - g2 n? - s2 (97)
s BS + 3h1’s - 5A2,S - 7K3,S - 9A.4,s - - (21‘1 + I)An,s -
0 (s = 1)
By = (98)
—%} (s=0)
and
W -iv_ + sw
_ n c
An,s = —— (99)

s=0, +1, -1

The continued fraction notation used here is defined in references 43 and 44. By combining
equations (95) and (96), the conductivity tensor may be written as

11 919 0
G=|-04, 11 0 (100)
0 0 034
where
_ 227 (3.
011= ¥y 3 gO v fo(gl + g_l)dv (101)
_ 221 (3.0,
T19 = ~€0%p Tgo v fol(g_l - gl)dv (102)
247 3
033 = -eowp T S.O v fogo dv (103)
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From appendix C, with k = ké3 in equation (C17), the dispersion function is

: 2 .
1+ (all/weo) - (ck/w) 012/“060 0
D(w,k) = -04q [iwe 1+ (0 /fiwe, ) - (ck/w)z- 0 =0
’ 12/ 0 11 0
0 0 1+ <o33/iwe 0)
(104)
Expansion of the determinant yields two uncoupled dispersion relations
o
_ 33 _
Dp(wk) = 1+ e 0 (105)
D(wk)=1_(c_k)2+mi_io_lg=o (106)
E N - W ICUEO
By using equation (103) for Oag, €quation (105) becomes
47 w2 oo 3
- m_p ! —
DE(w,k) =14+ = o S.O voing, dv =0 (107)

This dispersion relation represents a purely longitudinal electrostatic wave that is not
affected by the magnetic field. This same dispersion relation was found by Derfler
(ref. 14) for an unmagnetized plasma and is not considered further here. Substituting
for 04 and 0,5 in equation (106) yields

2
2 27ws e

_ ck P S' 2! _

D, (w,k) = 1 - (U) e g, () v2E (dv = 0 (108)
where g, is the continued fraction
2 3 n? -1

g (v) = e . /.. (109)

+ 3h1’i1 = 5A’2,:E1 - - (21’1 + 1))\.n’:tl -

This dispersion relation describes transverse electromagnetic waves propagating parallel
to the applied magnetic field, that is, left- and right-hand circularly polarized waves.
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The dispersion relations derived in this section (egs. (107) and (108)) exactly
describe the dispersion of waves propagating along the magnetic field in a Lorentz gas
plasma. If an anisotropic electron-neutral collision cross section o(v,x) is given, one
can obtain the transfer collision frequencies from equations (87) and (88) and then, in
principle, solve the dispersion relations. Often, in practice, only the velocity dependence
of the collision cross section is available and in this case the isotropic collision model is
of more interest. This case is considered in the next section.

Conductivity Tensor and Dispersion Relations for
kK || B With Isotropic Collisions

In this section it is assumed from the beginning that the electron-neutral collision
process is isotropic. This procedure was followed earlier for general k where the
calculation started with the Boltzmann equation given by equation (14) and a conductivity
tensor G given by equation (34) was found. In appendix K this ¢ is specialized to
propagation parallel to the magnetic field to obtain

911 919 0
0= 019 911 0 (110)
0 0 O33
where
.2
f.v w = kv
0, = -iw2e S 01 v "3 43 (111)
wg - (wy - kv3)
v 2
f.v w
_ 2 S‘ 0'1 c 3
019 = “h€0 - 5 5 d°v (112)
wg - (wy - kv3)
47riw250w v [ 1 - coth"lh
033 = - Iz) vig [—— dv (113)
k 0 1+ coth'lh
kv
x= v
kv
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After writing d%v = v2 sin 0 d9 do dv, the angular integrals in equations (111) and (112)
can be evaluated exactly but it is easier here to leave them in their present form for now.
Using equation (105) and 0gg from equation (113) yields

-1
1-Xxcoth™2x dv = 0 (114)

w 2 oo
DE(w,k) =1 - 4#(—1{2) g V'fz) .
0 1+ £ coth'lh
kv

where

This equation describes a purely longitudinal electrostatic wave as does equation (107)
and Derfler (ref. 14) has shown that in the limit of isotropic collisions, equation (107)
reduces to equation (114).

From equations (106), (111), and (112), the following dispersion relation for trans-
verse electromagnetic waves is obtained:

2 12
2 w f v /v
D, (w,k) = 1 - (95) s 2l 0L Bv =0 (115)
w w 2 w, - kvg + we

Then since d3v =v2 sin 0 dO d¢ dv, the integrals over the angles can be evaluated to

obtain
2
2 2nw 00
_ ck p 2t 2) -1 _
Di(w,k) =1 - (_w—) +Tk_-§0 \% fOE:t + (1 - ?xi coth Ai:ldv =0 (116)
where
w. T w
_ %y c
AT kv (117)

In appendix L it is shown that equation (108) is identical to equation (116) if isotropic col-
lisions are assumed in the former. In appendix M equation (116) is derived in a much
simpler but less rigorous manner. The dispersion relation expressed by equation (116)
is discussed further in the next section and is solved subsequently.
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Discussion of the Transverse Wave Dispersion
Relation for k|| B

If one goes through the derivation of the dispersion relation (eq. (116)) carefully, it
is apparent that the integral term in equation (14) has no contribution as was shown in
reference 45. This condition is true only for an isotropic collision process and for
transverse waves propagating parallel to the magnetic field. Hence, the collision model

(if) = vt - 1@)] (118)
at coll 0

will give the identical dispersion relation. If there is no velocity dependence of the col-
lision frequency in equation (118), then the constant collision frequency model of Allis

is obtained. Hence, the dispersion relation for constant collision frequency is obtained
merely by setting v equal to a constant in equation (116). This model is often used
because of its relative simplicity both in derivation and solution. In the case of a
Maxwellian electron distribution function, that is, equation (75), it is found in appendix N
that this model yields the dispersion relation

ck 2 wz W o+ w
D (wk) =1 - (_) +—P 7Y __Cl=9 (119)
+ w wkvg kvo

where Z(AO) can be written in terms of the complex conjugate of the Fried function
(ref. 35) (plasma dispersion function) by

Z (%) = z;,(x(*)) (120)

This dispersion relation has been previously obtained by Scarf (ref. 46), Lee (ref. 47),
and others,

In order to show how the dispersion relation given by equation (108) or (116) deter-
mines the propagation characteristics of waves, it may be assumed that there is present
a localized driving force given by

Text = [Ix® & + iy &0 (121)

Substituting this equation and equation (110) into Maxwell's equations and performing
appropriate manipulations yields

if, ()

weODq:(w,k) (122)

Ei(w,k) =
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where

E, = EX + iE
and

i =iy iy
Hence, it is seen that D_(w,k) and D+(w,k) represent right- and left-hand polarized

waves, respectively.

When solving the dispersion relation, it is important to keep in mind that equa-
tion (116) is defined for k real and w on a Laplace integral path. For this case the
real v-axis is the proper contour as indicated. If solutions for k(w real) are desired,
it is necessary to use the appropriate analytic continuation of D(w,k) which is found by
deforming the contour in complex velocity space so that no singularities cross the con-
tour while w is moved from the Laplace integral path (LIP) to real frequencies.

Note that the symmetry relation

*

D, (w,k) = DX (-w™,-k") (123)

is satisfied, and hence it is sufficient to consider only one of the dispersion relations:
D (wk) =0 or D+(w,k) = 0. Also note that

D(w,k) = D{w,-k) (124)

thus, k =0 is a saddlepoint in the k plane, and hence the roots of D(w,0) =0 will be
branch points in the w plane. The location of these branch points in the frequency
plane is of prime importance in aetermining the stability character of the system

(refs. 23 to 26). Details are given in the next section where solutions of the dispersion
relation (eq. (116)) are found.

SOLUTIONS OF THE DISPERSION RELATION FOR TRANSVERSE
WAVES PROPAGATING PARALLEL TO THE MAGNETIC FIELD

In this section the dispersion relation for propagation parallel to the magnetic field
is solved for several different electron distribution functions. A new collisional mode is
found to be unstable for some ranges of the plasma parameters. The wave considered is
the transverse-electric, circularly polarized wave known in ionospheric work as the
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"whistler" wave, In solid-state plasmas it is sometimes called a "helicon" wave. Both
convective and absolute instabilities are found when the electron distribution function is
monoenergetic. A Lorentz gas with nitrogen neutrals is then considered and instabilities
are again found when a peaked electron distribution function is considered. A Maxwellian
electron distribution function is then assumed, and it is found that the wave dispersion
predicted by the isotropic collision model (ref. 48) is very close to that predicted by the
constant collision frequency model of Allis. An electron distribution function consisting
of both peaked and Maxwellian components is briefly considered, and the stabilizing
influence of the Maxwellian population is demonstrated.

Monoenergetic Electron Distribution

For the initial analysis of the dispersion relation (eq. (116)) it is assumed that the
zero-order electron distribution is monoenergetic and solutions of the dispersion rela-
tion are obtained. Substituting equation (66) into equation (116) where the negative sign is
chosen so that the dispersion relation represents right-hand polarized waves yields

2
2 W "
D(w,k) = 1 - (C_k> + P 1Y (3 eoth-1a) - coth=Ia] = 0 (125)
W wkvo kvo
where
h = (K Q)
vd
Viv=v,
A = Wy, - %e
kvO
l} =

u(vo)

This dispersion relation was also derived and solved by Suzuki (ref. 15) but here a some-
what more detailed analysis of the stability of the waves is given.

Note that coth~1X is a multivalued function of A; therefore, equation (125) has an
infinite set of roots. However, later it will be shown that only those roots on the principal
sheet are of physical interest. As vy goes to zero, equation (125) approaches the
familiar cold plasma dispersion relation

2

2 w
D(w,k) = 1 - (%E) - _w(w—_pw_c_). =0 (126)

consisting of the upper and lower electromagnetic fast-wave branches and the slow-wave
whistler mode.
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The dispersion relation given by equation (125) has been solved under conditions
approximating those in the ionosphere at an altitude of 80 km, that is, Wy = 2w, and
v =0.06w,. Nitrogen exhibits a resonance scattering (ref. 39) such that h=5 at

mvg/Ze = 1.5 eV. By using these values, the results of figure 14 that show the real part
of the complex frequency as a function of k real are obtained. The upper, lower, and
whistler branches (U, L, and Whl, respectively) deviate only slightly from their cold
plasma values. The Wh2 mode is a new collisional mode not predicted by cold plasma
theory and first recognized by Suzuki (ref. 15). It has a very small group velocity and
hence represents a plasma resonance. When either h or \) approaches zero, this
mode has the solution w = w, .+ iv for all k. The major difference between the solu-
tion in figure 14 and the cold plasma solution is the mapping of the roots, Whl and Wh2,

T T T T T T T T T T
h=5 -]
Vo =1.22/eV
WP= ch
v =006 w, 7]
20 ]
i wh2 i
NI B e ——— e -
2 h
& 0
— —
_l —
_2 —
-3 —
] ] ! | l | | | P11 |
0O 2 4 6 8 10 12 14 16 18 20 22 24 26

kc/wg

Figure 14.- Brillouin diagram, Re(w) plotted against k real.
Dotted line represents higher order sheet.
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onto higher order Riemann sheets as k becomes sufficiently large. This mapping is
shown for the mode Whl in figure 15 where the real k axis is mapped into the com-
plex w plane by the dispersion relation with h = 0. In order to understand the
behavior of this root, note that coth-1x has a branch cut connecting the points at
A=+1, Ifas k varies, the w root moves in such a manner that A crosses the real
axis between +1 and -1, the appropriate analytic continuation of coth-11 must be used.
By writing w intermsof A,

w = we + iV + Akv, (127

and taking the branch cut to be on the real axis in the A plane, it is seen that in the

w plane the cut for k real goes from Re(w) = w; - kvo to Re(w) = w, + kv, along
the line Im(w) = v. Hence, whenever the w root crosses this line, 2 must go onto
another Riemann sheet. For the case shown in figure 15, it was found that the root
oscillates with extremely small excursions about the branch line Im(w) = v and thereby
goes onto successively higher order Riemann sheets. However, once the root leaves the
principal sheet, it no longer needs to be considered explicitly, since in constructing a
Green's function, this root would be taken into account by an integration around a branch
cut. This phenomenon was explained in more detail by Derfler (ref. 14) for the case of
electrostatic waves in an isotropic Lorentz gas.

| | | | l 1 1 1 1
05
04—
AU
N
3 =
= 03
H
02 -
Ol
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A 2 3 4 5 6 7 8 9 1.0
Re(w/wc)

Figure 15.- Locus of real wavenumber k in the frequency plane for
mode Whl. Dotted line represents higher order sheets.
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In figure 16, results are presented for the case h=+3 and h = +5 where the
real k axis is mapped into the complex frequency plane for both the Whl and Wh2 modes.

T l T I | | l | l
—  vg=l.22/eV -
wp=2wc
A2 h=-3
v =0.06 w, x4 |
< 08—
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~
2 ke/wg=%2
c c/we=%
-
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o
-.04 (a) ]
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2 4 6 8 10 1.2
Re(w/w,)

Figure 16.- Locus of real wavenumber k in the complex frequency plane
for modes Whl and Wh2. Dotted line represents higher order sheets.

In figure 16(a) the roots never dip into the lower half plane; thus, it is concluded that no
instabilities exist for that case. In figure 16(b) it is seen that for h =5, the mode Wh2
has a branch point with Re(w) = We in the lower half plane and indicates an absolute
instability, whereas for h = -5, the mode Wh1 dips into the negative half plane and indi-
cates a convective instability (refs. 23 to 26). A similar mapping for the fast electro-
magnetic modes in figure 17 shows that both branches become absolutely unstable for
h 2 -3.

Negative values of h less than -3 are seldom realized in nature, and therefore,
the new collisional mode Wh2 is considered more important for this analysis as it goes
unstable for values of hS 3. Since a value of h =5 is characteristic of the resonance
scattering peak near mv%/Ze = 1.5 eV in nitrogen, h =5 was chosen to investigate
the growth rate Im(w) of the Wh2 mode at k = 0. The growth rate is given by the
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Figure 16.- Concluded.
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Figure 17.- Locus of real wavenumber k in the complex frequency
plane for modes U and L. '

solution of equation (125) with k = 0, that is, by

w -~ wg(ihv/3) (wy - wc)'z - wf}(wy - wc)'l =0 (128)
In figure 18, the growth rate Im[w(k = 0)] is shown as a function of v with wp asa
parameter. Insicuilities with an e-folding time of 1 cyclotron period are easily obtained
with the parameters Wy > We and v > 0.2w,. Such values can be obtained in laboratory
plasmas in the range of 0.1 to 10 mm Hg (13.33 to 1333 N/m2). The lower left-hand
corner of the diagram is typical of the conditions in the lower ionosphere in which devia-
tions from a Maxwellian equilibrium are known to occur (refs. 49 and 50). It is therefore

possible that collisional instabilities of this type arise in nature.

Equation (128) can be rearranged to yield a third-order polynomial in w. The
exact locations of the roots will depend on the plasma parameters chosen but for a large
variety of cases it is found that the real parts on the roots were near w;. and

1/2
wc/z * (wg/fl + wS) / . If either v or h goes to zero, the order of equation (128)
is reduced by 1. The root with real part near w, vanishes, and hence it is concluded
that this mode was introduced by collisions.
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Figure 18.- Growth rate Im{w) of Wh2 mode at infinite wavelength as a
function of collision frequency v. Re(w) = We -

Peaked Electron Distribution

Equation (116) was solved for a monoenergetic electron distribution function and
instabilities were found for certain ranges of the slope parameter h. In particular, it
was found that for h < 3, there was an unstable mode (Wh2) with w = We. For h Z-3
three unstable modes, a whistler mode (Whl) and the two fast modes (U and L), were
found. Hence, one concludes that collisional instabilities of this type will be found in a
plasma if there are present (1) a background of neutrals that has ]h] > 3 over a region
or regions in velocity space and (2) a sharply peaked electron distribution function cen-
tered in one of these regions. As was done previously, the experimental electron-neutral
collision cross section for nitrogen (eq. (72)) is used. To meet the second criterion,
again the peaked distribution function described earlier and given by equation (73) was
used.

A computer program was written to solve the dispersion relation (eq. (116)). The
velocity integral was performed numerically by using a Gauss quadrature rule. (See
appendix G). The integrand has a branch cut between the points A =1 and A = -1, and

59



upon mapping this line into velocity space, six distinct branch cuts are found. The
proper contour is found by requiring that the real v-axis from zero to infinity be a valid
contour when k is real and when w is on a Laplace integral path (LIP). Generally,
the real v-axis from zero to infinity was found to be a valid contour for other w and Kk,
but occasionally it was necessary to deform the contour as described in appendix I.

The real k-axis was mapped into the complex frequency plane (fig. 19) to determine
the locations and types of instabilities. As expected, the new collisional mode was
unstable when s was sufficiently large, and when vy was located on the positive slope
of the collision frequency curve. No instabilities were found when Vg was located on
the negative slope of the collision frequency curve, as numerical difficulties were
encountered before the half-width of the distribution function could be made small enough.
The instability of the mode with Re(w) = w, was investigated more fully, and the curves
in figure 20 giving the boundaries in the S,V plane between the stable, convectively
unstable, and absolutely unstable cases were obtained. For the points A and B in fig-
ure 20, the real k axis maps into the complex frequency plane as shown in figure 21.

In figure 22 the electron distribution function is shown plotted for the points C and D in
figure 20.

The value of the collision frequency chosen for these figures, that is, v, = 5.26w,,
represents conditions in the lower ionosphere, Note that v is the collision frequency
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Figure 19.- Real k axis mapped into the complex frequency plane
for peaked electron distribution. Plot shows absolutely
unstable waves.
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Figure 20.- Stability of Wh2 mode as a function of distribution function parameters.
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Figure 22.- Normalized pegked distribution function for points on
boundaries of regions in figure 20. FPoiunts C and D.

at infinite electron velocity. If the collision frequency is averaged over a realistic elec-
tron distribution function, the average collision frequency will be on the order of 2w,,.
This value is perhaps on the high side of the range of values found in the ionosphere but
lower values of v, will only change the strength of the instability and will not, for
example, cause the case presented in figure 19 to become stable. It should be noted,
however, that in the collisionless limit the collisional mode at « = w, in figure 19
vanishes, and the plasma is stable. Since the plasma is also stable in the collisional
limit, there is some intermediate v, (and hence a neutral particle density) at which the
collisional mode is most unstable.

For either stable or convectively unstable waves, the mapping of real « into the
wavenumber plane is of interest as this case is the steady-state situation often investi-
gated in the laboratory, In figures 23 and 24, Brillouin diagrams that result from such
mappings are shown. For comparison, the prediction of the constant collision frequency
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Figure 23.- Brillouin diagram giving Re(k) ard Im(k) as a function
of w real for a convecti-rely unstable carce.
model of Allis obtained by using equation (10) for the collision term is also shown. The
value of the collision frequency used in this model was the average over the distribution
function, that is, equation (77). The exact theory predicts a convective instability for the
case presented in figure 23 since Im(k) goes positive near w = We-

Figure 24(a) is a similar case that is stable because of the slightly higher vp-
Figures 24(b) and 24(c) are similar to figure 24(a) except that the collision frequencies
are, respectively, one-fifth and one-tenth of those in figure 24(a). In figure 24(c) the
collisionless limit is also shown and from the sequence figure 24(a) to figure 24(c) it is
possible to see how the curves are approaching the proper collisionless limit,

Comparison of the Allis model and the exact theory shows that the discrepancies
are rather large. Particularly near w = w,, the exact theory predicts decreased
damping and, in some cases, instabilities. Hence, it is seen that for non-Maxwellian
electron distribution functions, it is necessary to treat collisions rigorously to obtain the
correct wave dispersion.
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Maxwellian Electron Distribution

A Maxwellian electron distribution (eq. (75)) was then assumed and equation (116)
was solved by use of the same collision frequency function. Since no instabilities were
expected, the real frequency axis was immediately mapped into the wavenumber plane to
obtain the Brillouin diagrams shown in figures 25(a) and 25(b). Again, the predictions of
the constant-collision-frequency Allis model are shown for comparison purposes. The
average of the velocity-dependent collision frequency as defined by equation (77) was
used in this model.

The agreement between these two models is clearly good, Several other cases
were calculated and the agreement between the two models was similar to the cases pre-
sented here. Hence, it would seem that if a Maxwellian electron plasma is being con-
sidered, the dispersion relation given by equation (119) should be satisfactory for most
purposes. One could then use the very fast existing computer program for the plasma
dispersion function developed by Derfler and Simonen (ref. 51).
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Figure 25.- Brillouin diagram giving Re(k) and Im(k) as a function
of w real for a Maxwellian electron distribution.

66



4 :
wp 2w, !
3r 4
J
ol
w
— Z
w Z
C ///
L
| L.
0 ! !
-3 -2 -l
Im (kc/w,) Re (kc/w)

(b) vy = 2\/ev; v, = lag; {v) = 0.34w,.

Figure 25.- Concluded.

Sum of Maxwellian and Peaked Electron Distributions

Since it was found that a peaked electron distribution may be unstable, one naturally
wonders how great would be the stabilizing influence of a Maxwellian electron population
when added to a peaked distribution. To answer this question, equation (78) was again
used as the electron distribution function. For the peaked component, parameters were
used that were known to lead to an absolute instability, that is, those used in figure 19.
The stability of the waves at various values of « and v; was then investigated. The
results are shown plotted in figure 26. From this figure it can be seen that the stabilizing
influence of the Maxwellian population is critically dependent on the temperature of the
Maxwellian. Since absolute instabilities occur at zero group velocity, that is, dw/8k = 0,
it is not surprising to find that low-temperature Maxwellians have more of a stabilizing
influence because of the larger number of low-velocity electrons. Comparison of fig-
ures 26 and 12 shows that the Maxwellian population required for stabilization is much
less for transverse waves propagating parallel to the magnetic field than for longitudinal
waves traveling perpendicular to the magnetic field. In figure 27 the electron distribution
function for a case on each boundary in figure 26 (points A and B) has been plotted. Note
that both cases are very much dominated by the peaked population of electrons.
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Figure 27.- Normalized distribution function consisting of peaked and
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Synopsis of Numerical Results

Briefly, it has been found that a rigorous treatment of electron-neutral collisions in
a non-Maxwellian Lorentz magnetoplasma predicts a new mode as well as the usual modi-
fied collisionless modes. This new mode vanishes both in the Maxwellian and collision-
less limits and may cause the plasma to be unstable under some conditions. This insta-
bility may be either convective or absolute and occurs at frequencies near the cyclotron
frequency. The modified collisionless modes were also found to be unstable for some
plasma parameters. It is known (ref. 47) that in the collisionless limit the transverse
electromagnetic waves considered in this section are stable; therefore, the instabilities
investigated here are a result of the electron-neutral collision process.
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DISCUSSION

The purpose of this report was to determine rigorously the effects of collisions on
electron waves in a weakly ionized magnetoplasma. The waves were assumed to propa-
gate in an electron plasma with infinitely heavy neutrals and ions. By using this model
(usually called the Lorentz gas model), the linearized Boltzmann equation was solved
with the collision integral and the conductivity tensor was derived. The dispersion rela-
tions for waves propagating both perpendicular and parallel to the magnetic field were
then derived from Maxwell's equations and solved for a number of cases of general inter-
est. It was found that the plasma supported a new class of collisional modes if (1) the
collision frequency was velocity dependent, and if (2) the electron distribution function
had a region in velocity space where afo/av > (0. These new modes could be unstable if
a large proportion (§ 70 percent) of the electrons were located in a region in velocity
space where the collision frequency increased (or decreased) rapidly.

For waves propagating perpendicular to the magnetic field, that is, kKl _ﬁ, the col-
lision model assumed allows for an isotropic velocity-dependent electron-neutral colli-
sion cross section, and two uncoupled dispersion relations were derived. One described
a modification of waves known in cold plasma theory as ordinary waves since they are
unaffected by the magnetic field in that limit. The other described extraordinary waves
and has slow wave solutions known variously as cyclotron, Bernstein, electrostatic, or
longitudinal waves. In the collisionless limit, this dispersion relation yields an equation
equivalent to that of Bernstein (ref. 29), whereas in the limit of zero magnetic field
Drummond's results (ref. 13) are recovered. When both the collisions and the magnetic
field vanish, Landau's dispersion relation is obtained (refs. 32 and 33).

The collisional dispersion relation for K1l B was solved for several electron dis-
tribution functions. One series of solutions were damped modes that were modifications
of the undamped collisionless electrostatic modes. Under some conditions they could be
driven unstable at frequencies near zero and the hybrid frequency. In addition, a series
of new collisional waves were found with real frequencies near zero and near each cyclo-
tron harmonic. Under the proper conditions, either absolute or convective instabilities
were possible at the cyclotron frequency and convective instabilities were possible at the

harmonics.

Waves propagating parallel to the magnetic field were also considered, and a colli-
sion model allowing a velocity and an angle-dependent electron-neutral collision cross
section led to two uncoupled dispersion relations. One described an electrostatic or
longitudinal wave that was not affected by the magnetic field. This same equation was
derived by Derfler (ref. 14) for an unmagnetized plasma. The second dispersion relation
described a transverse wave, one mode of which is commonly called a whistler wave in
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ionospheric work. This dispersion relation was solved and a new collisional mode was
found near the electron cyclotron frequency. It was found that this mode could be either
absolutely or convectively unstable under some conditions.

The isotropic electron distribution functions used when solving the dispersion rela-
tions were of varying physical interest. The monoenergetic distribution function was of
interest primarily because it gave relatively simple equations to solve. Furthermore,
the solutions were very helpful in showing the type of results to expect when more real-
istic distributions were used. The peaked, Maxwellian, and Maxwellian with a bump on
the tail were all of much more physcial interest since these distributions are quite pos-
sible in various types of plasmas.

To actually observe and measure the wave instabilities that this theory predicts,
some means has to be devised to set up a known electron distribution function with a peak
of the proper width and location. The plasma could then be excited at some frequency
and the complex wavenumber measured. It would not be necessary, however, to actually
observe an instability to show the validity of this theory, since it has been shown that for
non-Maxwellian plasmas, the predicted wave dispersal may differ greatly from that pre-
dicted by simpler collision models. For example, experiments that have been previously
done in the Vlasov limit might be redone in a regime where collisional effects are impor-
tant. For the electrostatic waves with kK 1 ﬁ, one should look for decreased damping at
frequencies just below the cyclotron harmonics. For the transverse waves with kK || E,
the decreased damping should occur precisely at the cyclotron frequency. If these effects
are observed, it should be possible to assume some model for the electron distribution
function, for example, equation (78), and vary the parameters to obtain the best fit to the
experimental wave dispersion data. This procedure was followed by Fields et al. (ref. 3)
using an equivalent temperature approach.

Most experimenters to date have merely observed the radiation from the plasma in
an attempt to observe the collisional instabilities. Tanaka and Takayama (ref, 5) and
Oddou (ref. 4) and others have observed anomalous emission at the cyclotron frequency
in plasmas containing the three noble gases: argon, xenon, and krypton. These gases
are generally called the Ramsauer gases, and they have a region where the electron col-
lision frequency curve is very steep. No anomalous emission was observed from plasmas
containing the other two noble gases: helium and neon. These gases have relatively flat
collision frequency curves, and the theory given in this report would not predict any col-
lisional instabilities. The emission from the Ramsauer gases was called anomalous
since it had an intensity many orders of magnitude larger than could otherwise be
explained. These experimenters observed also that the emission occurred in bursts that
had a direct relationship to an oscillation of much lower frequency. It seems likely that
the low-frequency oscillation was setting up the appropriate electron distribution function

71



necessary for the plasma to be unstable at the cyclotron frequency. It should be noted
that the radiation was observed primarily at the electron cyclotron frequency. The
theory presented here predicts an absolute instability at the cyclotron frequency but not
at the higher harmonics. Hence, much stronger instabilities (and hence more radiation)
would be expected at the cyclotron frequency than at the harmonics.

Wachtel and Hirshfield (ref. 8) have also performed an experiment demonstrating
collisional instabilities. They introduced monoenergetic electrons into a microwave
cavity containing xenon. They observed negative absorption at the cyclotron frequency
when the speed of the electrons was in a region in velocity space where the collision
frequency had a large positive slope. By negative absorption they mean that the electrons
were giving up energy to the waves in the cavity, and hence the waves were unstable.

The collision-induced instabilities investigated quantitatively in this report can be
understood qualitatively by considering a very simple model. Take a wave of frequency
w = w, propagating in a magnetoplasma consisting of monoenergetic electrons. For the
case of the transverse electromagnetic waves, right circularly polarized waves with
K ” B are assumed, and for the electrostatic waves one has K1B with E l K. Assume
that there are N electrons in the plasma. A little thought will show that in the begin-
ning for either direction of propagation, N/2 electrons will be gaining energy from the
wave and N/2 electrons will deliver energy to the wave. After a given length of time,
At, let Cg be the number of electrons that had a collision with a neutral while gaining
energy. Of those electrons, CG/Z will be gaining (or losing) energy aIt(_er the collision
since the collision will tend to randomize momenta. Likewise, let C; be the number
of electrons that have a collision while losing energy. After time At, the number of
electrons that are gaining energy is

(N ¢ ‘L~ ‘L g
NG*(—'CG>+7+'2—-2‘+T‘“2‘ (129)

C C
N =(E-CL)+—9+—E=E-—L+~29 (130)

If more electrons are losing energy, then the wave must be gaining energy and hence is
unstable. Hence, assume that Ny > Ng; equations (129) and (130) then yield Cg> CL'
But the number of electrons that collide in a given time is proportional to the collision
frequency, thus, v(v + Av) > v(v ~ Av). Hence, the collision frequency must have a
positive slope for the plasma to support an unstable wave at the cyclotron frequency.
Earlier, it was found that these wave instabilities were indeed present only if the slope
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parameter was positive and large enough. Because of the extreme simplicity of the
model considered here, it is not surprising that the agreement is qualitative in nature
and not quantitative., It is also interegting to note that this simple argument predicts
instabilities for w = w, but not for w = nw, (n=2,3,4,...). It may be recalled that
solutions of the dispersion found earlier sometimes predicted absolute instabilities at the
cyclotron frequency but never at any of the harmonics.

The theory given in this report appears to be the most accurate and extensive to
date concerning the effects of electron-neutral collisions on high frequency waves in a
magnetoplasma. The model assumed is that of a plasma of electrons colliding only with
infinitely heavy neutrals, and since all ion effects are ignored, this theory is valid for
frequencies somewhat above the ion plasma and ion cyclotron frequencies. By using the
techniques described in this report, it is possible to solve the dispersion relations for
essentially any electron distribution function, and by working backward one might be able
to calculate the electron distribution function or the collision frequency function when
given the experimentally measured wave dispersion, The equations derived and the
techniques described in this report should be particularly applicable to wave propagation
through and radiation from plasmas containing especially the Ramsauer gases (Ar, Xe,
and Kr) since the electron-neutral collision cross sections in these gases are such that
large collisional effects on waves are both expected and observed.

CONCLUDING REMARKS

The Boltzmann equation with collision integral was solved and the wave dispersion
relations for electron waves propagating both parallel and perpendicular to the magnetic
field were obtained. A Lorentz gas magnetoplasma was the model assumed. This model
requires (1) that the ions are infinitely heavy and (2) that the electrons are colliding only
with infinitely heavy neutrals. Numerical solutions to the wave dispersion relations were
obtained, and for both directions propagation the electron waves could be unstable if a
large fraction of the electrons had a velocity in a region where the electron-neutral
collision frequency increases (or decreases) rapidly enough.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., May 4, 1971,
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APPENDIX A
SOLUTION OF ZERO-ORDER BOLTZMANN EQUATION

In this appendix it is shown that any isotropic distribution f,(|¥]) is a solution of
the zero-order Boltzmann equation (eq. (16)) which in spherical coordinates becomes

afO(V)

w
C 9@

= vo(@) + L g £y (T ae’ (A1)

where EO is taken equal to BOéB' Let us write fo(ir’) as a spherical harmonic
expansion in velocity space

© ]
O =) ) G a® Y, 6,0) (82)
=0 m=-1

Substituting equation (A2) into equation (Al) yields

. "9,0
Z fl,m(v) Yz,m(e,go) (1mwC + v) = — (A3)
{,m

Var

For a nonzero v, this relation is satisfied only by fl m > 0 forall I and m except
I =m=0. Hence, from equation (A2), ’

1) = g o) (a4)

and the zero-order Boltzmann equation with isotropic collisions is satisfied by any iso-
tropic distribution function. From equation (A3) if v = 0, one can also see that the solu-
tion then becomes fO(VII’vi)’ but this case is not considered in this report. This same
technique can be applied to the zero-order Boltzmann equation with anisotropic collisions
(eq. (81)) to show that its solution is also any isotropic distribution function fO(IVI).
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APPENDIX B

DERIVATION OF FIRST-ORDER DISTRIBUTION FUNCTION
FOR ISOTROPIC SCATTERING

In this appendix the equations

. df

i(w,-E-7)f; + d—Tl = h(7) (B1)

and

dz(:) - (7 xT,) (B2)

are solved to obtain the solution given by equation (26). By direct substitution, it is easily
shown that equation (B2) is satisfied by

V() = Dfwc (o - 7)) - ¥ (") (B3)
where

Dij(qo) = ninj + (6-1]- - ninj)cos @ + €45k sin @ (B4)

To solve equation (B1), first find the solution of the homogeneous equation

df
. - H_
1(wy—k -v)fH+d—T—0 (B5)
Rearranging yields
dlnf
H_ . -~
- "'l(wu'k -v) (B6)

and the solution of this equation is given by

T
fH(T) = exp l:—inT +1i S. K - V(T')deI (B7)

Note that |¥(7)| is not a function of 7 as can be shown from equation (B3), and hence
the term wV(v) = w - iv(v) may be extracted from the integral. Now by using the
method of variation of parameter, it is assumed that
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APPENDIX B - Continued
flﬁf('r)] = C(7) fH('r) (B8)
is a solution of equation (B1) and, as a result,
(7 i(é_(:—) = n[7(7) (B9)
After integrating,
C(7n = S‘T %gg d7' + Constant (B10)

and equation (B8) then becomes

fl[V(T)] = {Constant +S. h][?:vg';] A7) f4(7) (B11)

Let 7= o> solve for the constant, and obtain

fy h
Constant = S‘ 0 E] (T ' (B12)
f T H(7")

which when substituted back into equation (B11), yields

(7)
t; =11(7) HT S' [(]H T (B13)

Then using equation (B7) yields

fH(T) T .
= exp|-iw,, (T - 7'1) +1 S‘ k - v(mdar' (B14)
f (T ) T
H\'1 1
But o is arbitrary so let o be -2, and since w is on a Laplace integral path, it
can be seen from equation (B14) that
f1e(7)
H -0 (B15)
fH(TO)
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APPENDIX B - Continued

Equation (B13) then becomes

T T
— Tt i _ ot B P 1] 1} ' B16
£y g_oo h[v (t ):lexp|:1wy(-r ) +1i S:r' K. -v(r )d'r]d‘r (B16)
Let
t=7-1
(B17)
t' =7 - 7"

and from equation (B3)

V(') = D(wet) * V(1)
(B18)

—

v(iT) = B(wct') - V(7

Equation (B16) then becomes

o0 t _
f, = S.o h[D (wet) - {r’]exp Eiwyt +1i go K -D(wgt') - ¥ dt} dt (B19)
The integral in the exponential is evaluated and a new tensor is obtained

t

L (wct) = wg S.

. D (wctv) dt' = nynywet + (5ij - nin.)sin wet - eijknk(cos wet - 1) (B20)

]

and then by defining ¢ = w7, equation (B19) becomes
1 (% La(e,7) =
£ = w—cgo e ®(@ [B(e) - Tlag (B21)

where

weo-K-L-7

v
q—)(@:‘_f) =1 W
c
From equation (21),
e o afO v(v)
h(¥) = = E; - = —4‘; Sfl(V')dQ‘ (B22)




APPENDIX B — Concluded

and h[D(%)
so is unchanged. Also, fo is a function of |V [; thus

Equation (B22) then becomes
ef
= = 0 = - v S‘ - '
v =_VUE -7+ 2\ £ (Fae
hI:D(cp) v] S D-V + i 1(v )d
and substituting equation (B24)into equation (B21) yields

LS. —¢(¢:v)d§0‘g‘ f
47Tcuc 0

0 - - _ f'
fl({,’)=_1_ e'q’(‘/”V)EEl-D-V_Od
(Uc 0 m A\’

Taking the integral S. d®' of this equation and rearranging yields

+

S.A(\'z")dﬂ'
S'f( yaor = £
wc [)
1--Y gg e~2(2,V") g4 a0
4w, 0
where
o0 (I> " _ f(')
AF") g e (9”"’)E1 D- V' < dg

Substituting this equation back into equation (B25) leads to

00 @ —_
S. e 2@, V) do
0

fl(v) = mw,

e A(V)+
gg &, g9 a0

47Tw

Thus, equation (26) has been obtained as desired
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APPENDIX C

MAXWELL'S EQUATIONS AND WAVE DISPERSION RELATIONS

Maxwell's equations may be written

eov-E’=p (C1)

v-B=0 (C2)

vx"=-§E (C3)
at

E%VX§=T+GO-§ (C4)

The Fourier and Laplace transforms of these equations are taken as defined earlier and
the following equations are obtained:

-ik -E=2 (C5)
€0
k-B=0 (C6)
kK xE = wB (CT)
oy XB=T+iw§eo (C8)
Ho

Electrostatic Approximation

First, consider what is commonly called the electrostatic approximation. This
approximation is valid for waves whose electric field is very nearly parallel to the prop-
agation vector K. The dispersion relation can now be derived from equation (C5). The
charge density in the plasma is given by

p=p;+pPy -en S' fl(V)d?’v (C9)

However, for the case being considered, the ion density p; is exactly canceled by the
zero-order electron density Pg- The part that remains is a polarization charge density
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that can be written as the gradient of a polarization vector
p=-vV.P=-en S fl(V)dSV (C10)

Now define a polarization tensor by P=7-E. Taking the transforms as defined earlier

yields

ik .7.-E=p-= —en‘gfl(V)d3v (C11)

and from this equation 7 may be obtained when given f - Substitute equation (C11) into
equation (C5) to obtain the dispersion relation

E.<i+i>.ﬁ=o (C12)
)

where T is the unit tensor. It was assumed earlier that K and E were parallel and
at this point it is further assumed, without loss of generality, that K = kél. Then,

T11
D(wk) =1+—=0 (C13)
0

This equation is the dispersion relation used to describe electrostatic or longitudinal
waves. In a plasma Landau waves (without magnetic field) and cyclotron waves (with
magnetic field) are in this class.

Electromagnetic Waves

For this case nothing is assumed about the E and B vectors of the waves. How-
ever, the perturbation distributien function fl(V) is still assumed to be known, and by

using
j = -en g Vfl(iz’)d3v (C14)

an expression for the current density in the plasma is obtained. Then the conductivity
tensor o defined by

7=-E= —en§Vf1(V)d3v (C15)

is obtained. Next combine equations (C7) and (C8) to obtain the equation
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- = 2
a c e 2=\ .%o _
E+i‘”eo+(a) (kk-kl)] E=0 (C16)
But for this to be true, the equation
- 5- c 2f/~ ~ 2=
D(w,k) = |T +- +(—) KK -k2T)| =0 (C17)
1(1)60 w

must first be satisfied. Equation (C17) gives the relationship between w and k and
is the wave dispersion relation describing the waves propagating in the medium whose
conductivity tensor is J.
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APPENDIX D
SIMPLIFICATION OF CONDUCTIVITY TENSOR FOR & | B
In this appendix the general conductivity tensor given by.equation (34) is reduced to
the form given by equation (42), This result is exact and no approximations are made,
The steps needed to obtain equation (42) necessarily involve large amounts of algebraic

manipulations of a generally straightforward nature; thus only a brief outline of the pro-
cedure is given here. First, G(v) given by equation (36) is evaluated, and from

appendix E
W 1
G(v) = Zu.y lE + S(Zl - 1)} (D1)

Equation (34) then becomes

w2 )
__p%0 S‘ ! S A, (7)ae|d
Gij = - ws o v 0(v) v j(v) \%

o0
2. gA-(V)dﬂgg vie'q’dw de
0 ' J 0
P S‘ vw v, (v)
9 0 v0 1
Y w + ivS( )
20 +1

Now consider each component of the tensor in turn. First 013 = Ogg = Ugq = Ugg = 0.

€

dv (D2)

=~

W

Next consider o0g3g where it can be seen that the second term vanishes, and by using an
integral given in appendix E
3¢
o yof
Ogg = 417'1w2<—:0 _ 0/l +8 1 dv (D3)
p 0 w, )3 (20 + 1)(22 + 3)

is obtained. For 049 and %91 again integrals worked out in appendix E are used to
find

2 ! l
drwe \wlw Ao vaS< )
_ 0"p“c S' A +1) 4, (D4)

g = =0 =
12 21 ) 0

w + ivS

)
20 + 1
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For 099,

oovf
.2 S‘ 0)1 1
= 4 _Y/24+8
%227 *%pf0 )y w37 [(zz+1)(zz+3):\

iuSZ( l )
N <wc>2 s< 2 > - 2+ 1) |\ gy (D5)

Finally, for 0115

. 2 '
driw’e oo vf 2 2
- =_p_9§ _O|L/kv \* (kv \igf 1
11 kZ 0 wVch w 20 + 3

o999 1
12 =S (2Z+1)
+Szz 7)” dv (D6)
* w + ivS 1 )
20 +1

but after rearranging one can obtain

i 2 =} V'f' w S(———1—>
wegtrey 02 oG ) -
0

2
k w+ivS( 1)
2 +1

The algebra necessary to derive these equations is quite extensive but generally straight-
forward. One can show the equality of equations (D6) and (D7) most easily by subtracting
the two and showing that zero is obtained. At one point it is helpful to make use of the

identity

D-E-T)=L-k (D8)

This equation can easily be proved by using equations (29) and (30) for the tensors and
showing that both sides yield the same result.
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APPENDIX E
THE EVALUATION OF SEVERAL PERTINENT INTEGRALS

In this appendix several integrals used in appendixes D and ¥ are evaluated and the
rest are stated without proof as they are all done in a similar manner.

Consider first the integral

1= { e ®@Vag (E1)
where

&(p,7) = i - LY

w
c
and
_ Yy

n= w—c'
Let F = kw' L' .nd rewrite equation (E1) to obtain

c

I = e~in® g eiF - V40 (E2)

This integral is easily evaluated and yields

I]_ — S‘ e_@(qoyv) dQ =e_1n(p4ﬁ]0(FV) (E3)

where jO(Fv) is a spherical Bessel function of the first kind given in terms of the ordi-
nary Bessel function of the first kind by

. Nk
@ =5 9,,10

Next consider the integral

I, = S' 7 e~ 2(@,9) 40 (E4)
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APPENDIX E — Continued

which can be written as

Ip = -i i_,g e 2@, V) g0 = i & I, (E5)
aF Y oF

Then the following equation is easily obtained:

I = S 7e (@) aq = 4rvie 19, (Fv) % -

In a similar manner, it can be shown that

. . j,(Fv) F,F,
-®(p,7) _ -ing M Tl L2
S‘ vjvle df = 4re lEZ,j 5 ) v ]2(Fv) (ET)

Now investigate integrals of the type
0 .
§ e F@a (E8)

In all the integrals of this type needed in appendixes D and F, it is possible to expand the

F(¢) in powers of sin (¢/2) and then to evaluate the integral in terms of a series. To
demonstrate, consider

I, = S'g 2(¢,7) 4 do (E9)
After using equation (E3), equation (E9) becomes
o0 n
I = S‘O e~ N9 47rj0(Fv)d(p (E10)

But for the case being considered, that is, K = kél, one can show F = (Zk/wc)sin(qo/Z).
After expanding jO(Fv) in its series representation, equation (E10) becomes

Z 2L [ po
2kv _i .2 @
=47 E (2Z T ( > <S0 e M %in 3 d§0> (E11)

The integrals in equation (E11) are Laplace transforms and were evaluated by Bateman
(ref. 52). Using his results yields
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°0 4rw
= _¢(¢:V) = c 1
e @12

14

where, for convenience, the symbolic notation

2la

S(a;) = Z (2 _(i{)‘,/.cfc.)(nzl_ %) (E13)

=1

has been used where

The remaining integrals are solved in a similar manner; therefore, they will be given
here without proof. The list of integrals follows:

S‘ e—@dQ = 47Tj0(Fv)e_imp (E14)
Te~® 40 = 4nivj (Fv)e 1 % (E15)
jl(Fv) F,F. y
S\ vjvle‘q’dQ =47 !ESZ’J.V - _F_zl VZJZ(FV) e 1Y (E16)
) drw
gs‘ e®dpan=—2F 1+s( 1 ) (E17)
0 iw, 20 +1
" 69 005 € (Fyydo = - ¢ g1 ) E
50 e M cos 53y (FVde = - Sl (E18)
(o o] . w
-in¥ gin € ;i . (Fv)d :-l__cs< l )
go e sin o= 1y (FV)de = - o == Slg (E19)
® ing 1) v )1 1
e-1n9¥ dp=2{=+8 E
go F in\3 [(21 D&+ 3)} (E20)
e"iN95_(Fv)dg = -1 8 24 E
go 2 (2 + (2 + 3) (E21)
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© i _1({%c € -1

S‘O e~1M9 gjn2 ] (Fv)de (kv) SI:ZZ - 1:| (E22)
* o-in® wc)z 1-1

‘S‘O sin & 2 cos - ]z(Fv)dgo = S<2Z - 1) (E23)

" eming L 29 - _i [ 2 (w €-1
S‘O e™T cos? 3 jp(Fv)dg {Sl_zz + (2 + 3 )]+ kv) S[zz " 1]} (E24)
w 2
-iny cos @ . _vJ1 1 @e i
S'o e 5 j{(Fv)de = 5{3 + SEZZ D@ 3)] + (kv) S(zz " 1)} (E25)
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APPENDIX F

COLLISIONAL CYCLOTRON DISPERSION RELATION FROM
ELECTROSTATIC APPROXIMATION

In appendix C it is shown that for waves that are nearly longitudinal, the electro-

static approximation yields the dispersion relation

D(w,k) = 1 + _Ell =0 (F1)
0
(F2)

where
p= -engfl(V)d3v =ik -7 - E
From equation (26), an equation for the first-order distribution function fl is obtained

which when used in equation (F2) yields

1 (; b v ) E: Vv — (1(0
g 3

- 03"
5‘5 &(@,7") qp a0’

47ro.)

Recalling that B Be3 and K = kél and using the integrals given in appendix E

results in
. (fp)z w0 Vbe(V)(w - iy)
=47 ) d
1 ‘0 k go w + 1vG[) v (F4)
where
- (kv/u)c)ZZ
Gv) = Z ) Ry
Z=1(21+1)(n -1) (77 -1 )
and
w
==

[¢]
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Substituting equation (F4) into equation (F1) yields
2 e vbe(v)w
{ v (¥5)

)
D(w,k)=1+.47T _— 0 m

k
and the dispersion relation given in equation (51) has been found but in a much simpler

manner. The more complicated derivation was used earlier to show how the electro-
static dispersion relation could be obtained from the more complete theory.
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In several of the dispersion relations solved in this report, it was necessary to

QUADRATURE RULE FOR WEIGHT FUNCTION exp(-x2) ON [0,<]

APPENDIX G

evaluate integrals numerically. These integrals were all of the form

and were performed by a Gauss quadrature rule.

(=}

g e'xzf(x)dx
0

o N
gO e'xzf(x)dx = glzl Wlf(xl)

It is easily shown that if w; and )

if f(x)

(ref. 18) the weights W,

is a polynomial of order less than 2N. From Gallant (ref. 53) and Wilensky
are used for N = 20 and 40, These values

are given in table II.
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TABIE II.~ WEIGHT'S AND NODES FOR THE QUADRATURE RULE USING THE WEIGHT

o NeReoNoNoNoNoNeoNoNoNoRoNoNoNoNoReoNoNoNe)

and the nodes %

This rule enables us to write

(G1)

(G2)

have been chosen correctly, this equation is exact

FUNCTION -2—exp(-x2) N [0,]
Vr

(a)

X
1

. 1427950969991826E-01
. TL63130039219270E-01
.1808615630580397E 00
. 32943335606L2905E 00
. 5160505430615322E 00
. 736255457580891LE 00
. 9858735750375285E 00
.1261289016102767E 01
.15595796L5209661E 0L
.1878561919302981E 01
. 221679416538 766LE 01
. 2573577820826277E 01
. 29L48989T746787235E 01
.33439813798616L0E O1
. 3760599932910770E 01
. 4202L42600421132E 0L
. L6T7560884T7794480E 01
.519090168697L998E 0L
. 5769985165567762E 01
. 647055838706L57LE 01

20-point rule

cReoNeoNoNoRoNoNoNoNoNoNoNoNoNoNoNoNoNoNe!

Y2

. 4126248095354063E-01
.9L01377007261654E-01
.1398673127403206E 00
.1704175033159441E 00
. 176L9L8260002838E 00
.1545791839772282E 00
.1123067291104619E 00
. 66048287L2706440E-01.
. 3061944925866195E-01
.1088291653324355E-01
. 2879302149689494E-02
. 54889891 481506 79E-03
. 7261283758335416E-0k4
.6366757009378284E-05
. 348763554069259LE-06
.1100893097830079E-07
L1778423417h4185T7TE-09
.121407Lh7655L3346E-11
. 24 48L28821057576E-1k
.5993073454594019E-18



TABLE II.- WEIGHTS AND NODES FOR THE QUADRATURE RULE USING THE WEIGHT

eNoNeNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoRoRoNoNoNoNoNoNoNoNoNeoNoNoNoNe!

APPENDIX G -~ Concluded

FUNCTTON 5% exp

=
()

*

. 515001.035639331LE-02
. 270780249482941.3E-01
. 6629858021.1L2996E-01
.122439601.5988346E 00
.1949786809306882E 00
. 2832755895057396E 00
. 38660184221 76653E 00
.5041705134328L89E 00
. £3516145938060005E 00
.778762379282867TE 00
. 9341589652282645E 00
.11005834861386T1E 01
. 1277312213015507E OL
. 1Lh63677876957118E 0L
. 165590758 77002548E Q1
. 1862967959865027E 01
. 2074884066030345E 01
. 2294422931 706635E 01
. 2521251984268593E 01
.2755106998376953E 01
. 2995791923381212E 01
. 32L3179256519709E O1
. 3497211327571L455E OL
. 375790288611L0T78E 01
. 1025345452L03971E 01
. 1299714023322116E 01
.1581276943399332E 01
.4870410105599751E 01
.516761.7222469367E 0L
.5473558861103993E 01
. 578909456041 7860E 01
.6115345232898952E 01
.645378842729165LE O1
. 6806409661 424949E 01
. T175955680231676E 01
. 7566388429073037E OL
L798377828755L1UE O1
.8438311541355173E 01
.891198L135501071LE OL
.9570481178890L05E 01

(-x2) on [0,s] - Concluded

4o-point rule

eNoNeoNoNoNoNoNoNoNoRoRoNoNoNoRoNoNoNoNoNoNoRoNoNoNoNoRoRoNoRoNoNoNoNoNONO NG NGNS

Y2

.1490554725118071E-0L
. 3452733473086753E-01
. 5365120033130722E-01
. 7162848L82763389E-01
.8748201803249430E-01
. 9990783959338579E-C1
.10745571741L39692E 00
.1088800688850989E 00
.10359389207741LOE 00
. 9206274103552843E-0L
. 7592560230950505E-01
. 5769699113930270E~01
.4009918101795804E-01
. 2529L40279616882E-~0L
.1437098784698673E-01
. 7297696263942531E~02
. 3286876149615393E-02
.13029L41977664821E-02
. 4510407826591 L82E-03
. 1352649280556334E-03
. 3485330737193931E-0k
. 7640L69079803097E-CS
. 1L16940072635054E-05
. 2193302752467988E-06
. 2806496911831388E-07
. 2933096982986261E-08
. 2700415502733 38E-09
.1650361609485315E-10
.8593168390112723E-12
.3413713673581817E-13
. 1008670314083280E-1k
. 214868L67T7TH0992E-16
.3173178811113663E-18
. 3088596815526213E-20
. 185186L4065560540E-22
.6221943052492195E-25
.1017307376257966E-27
.6430L45279019888E-31
.1017Lk6694L507922E -3k
. 1349L0L569685490E -39




It has been pointed out that one can write

APPENDIX H

ASYMPTOTIC EXPANSION OF G(v)

G() = -1+ stF, 1/2; 3/2,1 -7, 1 + 7; -<w

(H1)

Meijer (ref. 31) gives the theory of the asymptotic expansion of the generalized hyper-

geometric series

one obtains

where

The h terms are given by the recurrence relation

92

pa

GWv) = _77‘/_7_._!} cos <2p ~ %71> + B sin <2p -3

2p3/2sinnﬂ
[ o]
+<g)2 (772—1)...
p
1=0 (2 + )p
kv
p w,
© -1
7 = ww(v)
c
Aoy 2 D4 Bg D
= ——2+—4—'—6+—8+
p p p p
S - T T O
"D 37 577
P p° pY bp

(,,72 - 12) + 07 cot - 1
2p

a-1 l
oL z(‘l) Vihy
o 1 -

o = l+1

F_, and after specializing his results to the ZF3 in equation (H1),

(H2)

(H3)

(H4)

(H7)

b



APPENDIX H — Concluded

where
hy =1 (H8)
_1+1 l 1.3 1.5
v, =- ) -+ - 2HZBZ+1(77) + BZ+1(§ + Z) + BZ+1<§ + Z) (H9)
1 (@ odd)
H = (H10)
0 (I even)

and Bl(x) are the Bernoulli polynomials.




APPENDIX 1
NUMERICAL CONTOUR INTEGRATION

Let us consider the contour integral of some function F
22
I=\ F(z)e™?" dz (11)
c

with the contour given by

2'17/x2
=x|1+ _2—1'1'1_ (12)
X + x2
where
Ym
‘y I e——
Xm
(I3)
0=x<w
Note that x is real, and one can easily show that Maxl:lm(z'):l =Ym at x=x.,. A
plot of this contour is shown in figure 28. Substituting equation (I2) into equation (I1)
yields
I= 51 F(z)e“Zz dz.
c
% Ziyx%n 9 - 47X2Xr2n yxrzn Ziyx?n(x?n - x2)
=S. Flx 1+—2——§ e ¥ exp -1+ 1+ 5 AV dx (14)
0 Xy + X X2+Xr2n x2+x12n (xm+x)
From appendix G, the Gauss quadrature rule is
N
-X _ m
S.O f(x)e dx = R Z Wlf(xl) (15)
=1
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T | T
[H_airx ]
Z= X -3
! X"+ X
1+ X -
2 *Xm
Im(z) 3
Y
] ] 1
(o) [ 2 3 q
Re(2)
Xm

Figure 28.- Normalized mapping of contour in complex z plane.
Note that Re(z) = x.

and applying this rule to equation (I14) yields

S‘ (z)e‘Z dz _Vm Z w! F(z (16)
c 2 A l ( l)
where
Ziyx2
z) =% 1+——2 mz (1)
Xp + Xf
‘ 21}/x2 (an - xl“z) 4)'X12X?n ) YX'I?'n
w; = w1+ 5 AV exp|— 5|1+ — 5 (18)
(xm+x> X5, + Xf X5, + Xf

By using the technique described, it is possible to do very accurate numerical contour
integration by means of the Gauss quadrature rule. Note that no rapidly oscillating
terms are introduced in the integrand of equation (I4). For best results it was found
that y should be kept small, for example, 7 <0.5.
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APPENDIX J
DERIVATION OF TRANSFER COLLISION CROSS SECTION Ql (v)

From the definition,

Y, (6,0

= 1. tm_ 77
Q) = § otranfs - B0

and use of the Legendre polynomial expansion

yields

From

which

o0

o0 = ) on(v) Pyleos x)
n=0

Y, (6',0"
_ § im* 2
le = 4 Un(V) g Pn(COS X) 1- W dQ

figure 29 it can be seen that
cos x = cos 8' cos 0 + sin 0" sin @ cos (@' - @)

allows the use of the addition formula

n
P (cosx) = ) ()5PK(cos 6") P¥(cos 0) eim(#'-¥)

=-n

Then evaluate the integrals in eciuation (J3) and obtain

This equation is identical to that obtained from substituting equation (J2) into Allis'

!
U = 47 00'2z+1)

transfer collision cross section
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(J2)
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Figure 29.- Geometry of collision velocities ¥ and Gﬂ
and after impact, respectively.

Thus it is concluded that
Q™ =

for all m as claimed in the text,

before

J8)
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APPENDIX K

CONDUCTIVITY TENSOR FOR k | B WITH
ISOTROPIC SCATTERING

In this appendix the conductivity tensor from equation (34) will be obtained for the
case of propagation parallel to the magnetic field. By taking k[ B, that is, K= kés,
equation (38) yields

w  -Kkv
o(0,7) = i Lw___@ (K1)
c
Substituting equation (K1) into equation (34) yields
913 = 923 = 931 = 932 = 0 (K2)
2 v 2
W€ f v 0
I S 01 S‘ -% 3
0117 999 " " o e” " cos ¢ dp|dv (K3)
c
2 12
wle f v o
Oi9 =091 = 5 OS‘ Ov2<§ e~ ?® sin © d<p> d3v (K4)
c 0
2
wle
O = - fcog vy (v) §v3§ -%(9,) ag a0
2
USLLES
+ L dv (K5)
4w
) do Ao
47rcu S‘S‘ ¢
Upon evaluating the integrals in equations (K3) to (K5), one finds
v 2
f.v w_ - kv
2 01 v 3 3
Tqq = Ogg = -iWwie d“v (K6)
11 22 p 0 v wz_(w ~ kv )2
c v 3
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flv2 w
_ _ 2 01 c 3
"12“"’21‘wa05 v 2 v
c

2

- (wV - kv3)

47riwze w oo 1
p°0 S‘ vfl 1 =Acoth™a

0 .
k2 0 1+ coth-1a
kv

dv

0'332_

where

>
I
7l

(K7)

(K8)

The angular part of the integrals in equations (K6) and (K7) can be easily evaluated but

will not be needed at this time,




APPENDIX L

PROOF THAT THE ANISOTROPIC DISPERSION RELATION YIELDS
THE ISOTROPIC DISPERSION RELATION IN THE LIMIT
OF ISOTROPIC SCATTERING

In this appendix the dispersion relation expressed by equation (108) is reduced to
the one in equation (116) in the limit of isotropic collisions. For isotropic collisions,
that is, o = o(v), it can be seen from equation (88) that all the v, terms are equal.
Hence let v, = v(v) for all ! and equation (108) then yields

2
D (w,k) = 1 - (%)2 + ZZT(P So ) vzfz)(v) dv (L1)
where
+ B + +
and
w.  + W
e = iyl«:v -

Take now the part of the integrand in brackets in equation (116) and expand it in a series
in powers of 7\;1 to obtain

7\'2 -4 A—2n

2 -1 .21 + + *
A (I—K)cth A, =E—lst—+—+. ..+ L
+* )0 £ A3 35 5.7 " (2n + 1)(2n + 3) * (L2)

>

Convert this asymptotic series into a continued fraction by the method of Viskovatoff as
described by Khovanskii (ref. 43) to obtain

. a2 -1 2
A <l-h>th A, == —_— L. e ..
+ +)¢° 3, -5, - Ty - -(2n+ Day -

Hence equation (116) yields an equation identical with equation (L1). It has therefore
been shown that equations (108) and (116) are identical in the limit of isotropic collisions.
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APPENDIX M

SIMPLE DERIVATION OF DISPERSION RELATION
FOR WAVES WITH k|| B

In this appendix the dispersion relation for propagation parallel to the magnetic
field is derived in a simpler but less rigorous manner (ref. 45) than was used earlier,
The assumption is made that the waves are transverse in the course of the derivation;
therefore, only the dispersion relation for the transverse electric waves is obtained.
For isotropic collisions in a Lorentz gas, the Boltzmann equation is written as

A, .8 _e(EivxB)- L= vy —gf( )de! (M1)
ot oY m v
The ansatz is made
W

£(7) = £4(¥) + 1;(F)

=i

E

0+E, P (M2)

O+B

1l
osl}

B 1 J
and the zero- and first-order equations for f; and f; are obtained. The zero-order
equation has as its solution any isotropic fo( I\'f'l) (appendix A), and the first-order
equation is solved by means of Fourier and Laplace transforms in space and time based
on the wave representation exp(iwt - ik - ¥). Taking EO = B0é3 and writing the first-
order equation in spherical coordinates then yields

of
' - v(v) Cz (= , e = 0
i(w, - kv cos B)fl + wc v —lgfl(v Nde' + = E P (M3)

Expanding the dot product in component form results in

of £ sin 6
~0_0 i@ -i
155 (e E +e 90E+) (M4)

—

E

where E, =E,  + iEy are the fields of the right- and left-hand polarized waves, respec-
tively. Now the solution

= ig -ig
=t e¥+1 e (M5)
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is assumed and from equation (M3)

. ie EifO sin @

& 2m -
w, Fw, kv cos @

(M6)

is easily obtained. From Maxwell's equations of electrodynamics, the current density is

- - 2 -
j= -enS‘Vfl d3v = Ii(-cw—k) - ];]iweoEl

which yields

2
= -27 en S‘ v s1n2{9f:t dé dv = [j((c:o—k) - liiioueoEi

Then, substituting equation (M6) into equation (M8) yields

71ne2E v sin 8f dg dv 2
_ifck -
g S‘ (—) ~lliwe ,E
0 W, Fw, - kv cos 5 [\w 07

Equation (M9) then gives the dispersion relation

2 ww 3s1n39f'
D(wk)_1_(C_k) S g O  ddv=0
0 w,+w, -kvcos?t
where
2
w2= ne
Y me

Evaluating the integral over 8 then yields

D (w,k) =1 - ( ) 2WP§ [i . (1 - Ai)coth’lk:;'dv

where
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which is the same as equation (116). This derivation demonstrates that the integral term
in the Boltzmann equation (eq. (79)) does not contribute to the dispersion relation for
transverse waves propagating parallel to the magnetic field, Note the integral vanishes
when obtaining equation (M6). From equation (M10) it can also be seen how D_(w,k)

and D +(c«),k) are associated with right- and left-hand polarized waves, respectively.




APPENDIX N

REDUCTION OF EQUATION (116) TO FRIED FUNCTION
REPRESENTATION IN THE APPROPRIATE LIMIT

In this appendix the Fried function representation of the dispersion relation
(eq. (119)) is obtained from equation (116) under the assumption of (1) a constant collision
frequency and (2) a Maxwellian electron distribution. Integrating equation (116) by parts
yields

2 47rw2 00

=1 _ (kY _ -1
D, (w,K) = 1 (w) TR Y, Vo cothIa, av (N1)
It f, is Maxwellian,
vg |
and the integral in equation (N1) becomes
5] V2 0
I= S vt coth™la_ dv = __OS‘ £ coth™1x, dv (N3)
- 0 0 + 2 Jy 0 +

Doing a second integration by parts and substituting equation (75) for fo results in

by 0 2
0 g e X
I=- dx N4
2773/2VO 0 x2 - A2 (N4)
where
v
X = —
Yo
N
An =
0 kv

The integrand is an even function; thus,

by 0 2
0 S‘ e X
= - dx
! 477372 VO - XZ - A.g (NS)
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Expand equation (N5) in partial fractions to obtain

I=- 8773/12 /S.oox—ko S.oox+ho ' (N6)

Putting x - -x in the second integral yields

g 'xzdx N7
3;2 0 X - A 0 ( )

Since the dispersion relation is defined for k real and w on a Laplace integral path,
equation (N7) is the proper equation for Im (?\0) < 0. For other values of 7\0, the
analytic continuation is used. Hence define

o0 2
1 -X
Z(AO) = 7 . xe_ i dx (Im(xo) < o) (N8)

and equation (N7) then becomes

Z(x
1= __Ql (N9)
47rv0
Substituting equation (N9) into equation (N1) yields
2
2 w w aw
-1 _ (¢ck P 7 Vv c
D, (w,k) = 1 (w) * oo 2 (N10)
and hence gives equation (119). Fried and Conte (ref. 35) define
00 2
1 e X
= Im >0 N11
Ze® - =) $o3 (im(#) > 0) (N11)
and by using equation (N8) one can show
ok [k
Z(%g) = ZF(AO) (N12)

Equation (N10) can then be written in terms of the Fried function (plasma dispersion
'function) if desired.
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